[¹⁸F] FDG-PET/CT revealing aortic hypermetabolism in patients with chest pain after COVID-19: a retrospective study.

- 3
- 4 Pierre Dudouet^{1,2}, Serge Cammilleri³, Alexis Jacquier^{4,5}, Eric Guedj³, Didier Raoult^{1,2} Carole
 5 Eldin^{2,6}
- 6 1: Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- 7 Aix Marseille Univ, IRD, APHM, VITROME, Marseille, France
- 8 2: IHU-Méditerranée Infection, Marseille, France
- 9 3: Aix Marseille Univ, APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital,
- 10 CERIMED, Nuclear Medicine Department, Marseille, France
- 11 4: Service de radiologie cardio-thoracique, Hôpital La Timone, AP-HM, Marseille, France
- 12 5: Aix-Marseille Univ, UMR 7339, CNRS, CRMBM-CEMEREM (Centre de Résonance
- 13 Magnétique Biologique et Médicale Centre d'Exploration Métaboliques par Résonance
- 14 Magnétique), AP-HM, Marseille, France
- 15 6 : Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- 16
- 17 Abstract word count: 275
- 18 Main text word count: 2,118
- 19 References: 30
- 20 Figures: 2
- 21 **Tables: 3**
- 22 Key words: SARS-CoV-2; long COVID; aortitis; ¹⁸F-FDG PET/CT scan; chest pain
- 23
- 24
- 25 Corresponding author: Dr Carole Eldin, MD, PhD
- 26 carole.eldin@gmail.com
- 27 Service de maladies infectieuses et tropicales aiguës, IHU Méditerrannée infection, Hôpital de
- 28 la Timone. 19-21 Boulevard Jean Moulin, 13005 MARSEILLE.

- 29 ABSTRACT
- 30

Background: Long-term consequences of SARS-CoV-2 infection are still poorly known and
will become a major issue in the coming years.

33 **Objective/Design:** We performed a retrospective study including patients with a proven previous SARS-CoV-2 infection, who underwent a ¹⁸F-FDG PET/CT scan in our center to 34 35 explore symptoms that persisted more than three weeks after the acute infection. We 36 incidentally discovered aortic hypermetabolism in 10 of these patients and compared their 37 clinical characteristics to 37 controls with persistent symptoms and no aortic 38 hypermetabolism. Results: In these 10 patients, aortic SUV values were between 2.52 and 4.45, and aortic/liver 39 40 values were between 0.88 and 1.18. The thoracic aorta was involved in all patients. Four 41 patients had a new ¹⁸F-FDG PET/CT scan at between four and six months of follow-up and 42 showed persisting or increasing aortic hypermetabolism. When compared with the 37 43 controls, patients with aortic hypermetabolism were less frequently active tobacco smokers, 44 (P=0.001), and less frequently had experienced dyspnoea (11% vs 52%, p=0.02) and ageusia 45 (0 vs 37.8%, p=0.02) during the acute phase of the illness. Patients complained more 46 frequently of chest pain at re-evaluation (60% vs 19%, P=0.017). Chest pain and the absence 47 of active tobacco smoking were also associated with aortic hypermetabolism in univariate and 48 multivariate analyses (β =0.4; 95% CI: 0.185-0.7; P=0.002 and β = 0.5, 95% CI: 0.175-0.453 49 respectively). 50 **Conclusions:** SARS-Cov-2 can infect endothelial cells and its ability to cause post infectious

51 chronic vascular inflammation has already been suggested by previous reports. Further studies

52 and close follow-up of these patients are needed to better understand this new entity and its

53 future consequences. Clinicians should search for aortic hypermetabolism in patients

54 presenting with persistent chest pain after COVID-19.

55 **Funding source:** none

56 INTRODUCTION

57 The COVID-19 pandemic that started in December 2019 in Wuhan, Hubei Province, 58 China, due to SARS-CoV-2, has already caused 83,910,386 confirmed cases and 1,839,660 59 deaths around the world (1). With clinical presentation initially suggesting a flu-like 60 syndrome, COVID-19 has revealed multiple unexpected extra-pulmonary complications such 61 as thrombosis, cardiac injuries, anosmia, ageusia, dizziness, encephalitis, strokes, diarrhoea, 62 hepatitis, colitis, acute kidneys injuries, myocarditis, cutaneous ecchymosis or rashes, and 63 vasculitis (2).

64 We are now seeing the emerging challenge of long-term persisting symptoms and 65 sequelae in patients with a proven COVID-19 infection. This new clinical entity has been 66 referred to as "long COVID" by some authors, but remains to be fully characterised (3-5). A 67 recent cohort study assessed the most frequent syndromes after COVID-19 and found a high prevalence of fatigue, muscle weakness, and sleep difficulties (6). Patients who were more 68 69 severely ill had more severe impaired pulmonary diffusion capacities and abnormal chest 70 imaging manifestations (6). Several dimensions can be identified among persisting symptoms. 71 The question of respiratory sequelae and the hypothesis of evolution to post-infectious 72 chronic fibrotic interstitial lung disease, remains unanswered (7,8). Post-infectious persisting 73 anosmia is increasingly reported, and patients may benefit from olfactory training in this 74 situation (9). Finally, the viral neurotropism of SARS-CoV-2 through the olfactory bulb is a 75 potential explanation for neurocognitive persisting symptoms, and we recently identified cerebral hypometabolic patterns in these patients (11). 76

In this context, as part of a previous study, we performed brain and full body ¹⁸F-FDG
 PET/CT scans on confirmed post COVID-19 patients with persisting symptoms, to search for
 persistent inflammatory lesions (11). Among these patients, we retrospectively and

80 incidentally identified 10 patients with significant aortic hypermetabolism. Here we report 81 and describe these patients, their clinical and imaging characteristics, and their follow-up 82 when available, compared to the other 37 patients undergoing an ¹⁸F-FDG PET/CT scan. 83

84 **MATERIAL AND METHODS:**

85 Inclusion criteria

86 Following the two SARS-CoV-2 outbreaks in Marseille (April-March 2020 and 87 October-November 2020), 51 consecutive patients presented at our center, complaining of 88 persisting symptoms (fatigue, dyspnoea, hyposmia, anosmia, dysgeusia, ageusia, memory/cognitive impairment, insomnia, pain) and received a full body ¹⁸F-FDG PET/CT 89 90 scan to search for post-infectious residual inflammatory lesions. We included in our 91 retrospective analysis all patients with symptoms evolving more than three weeks after an 92 initial proven SARS-CoV-2 infection (i.e., with a positive RT-PCR at the onset of symptoms, 93 or a positive serology for SARS-CoV-2 after the initial acute symptoms). After identification 94 of aortic hypermetabolism, patients were recalled for a new ¹⁸F-FDG PET scan for follow-up, 95 and a dedicated aortic CT-scan.

96 Patient data was anonymised. The data collection was retrospective with no ethical 97 approvement requirement other than informed consent, according to French and European 98 regulations. These data were extracted from a study which was GPDR (General Data 99 Protection Regulation) compliant, registered under the following reference code: PADS20-296.

100

101 ¹⁸*F*-*FDG PET imaging*

102 ¹⁸F-FDG PET scans were acquired in the same center using an acquisition protocol which 103 conformed to European guidelines, in a resting state, in fasting subjects for at least four hours 104 with a controlled, normal glycaemic level, using an integrated PET/CT General Electric

105 camera (Waukesha, WI), after intravenous administration of 150 MBq per 15-minute 106 acquisition at 30-minutes post-injection. Images were reconstructed on a 192×192 matrix 107 using the ordered subsets expectation maximisation algorithm and corrected for attenuation 108 using a CT transmission scan. The interpretation was performed by an experienced nuclear 109 medicine radiologist within our center (SC). Hypermetabolic regions were described based on 110 the ¹⁸F-FDG uptake compared with the liver. After identification of abnormal hypermetabolic 111 aortic patterns in ten patients, it was suggested controlling the ¹⁸F-FDG PET scans six months 112 after the initial episode.

113

114 Aortic CT angiography

After identification of aortic hypermetabolism, patients were invited to undergo computed tomography angiography to measure aortic diameters and volumes. The patients underwent preprocedural computed tomography angiography (CTA, Revolution EVO, GE Healthcare, Chicago, USA). CTA scans were performed after administration of a bolus of 1 cc/kg of a non-ionic contrast medium flushed with a bolus of 30 cc of a saline solution. The acquisition parameters were as follows: slice thickness = 0.6 mm; pitch = 1.3; reconstruction slice thickness = 0.6 mm; peak voltage = 120 kV; and automatic modulation of mAs.

123 <u>Statistical analysis</u>

Categorical variables are presented as numbers and percentages, and continuous variables are
 presented as the means ± SD (standard deviation). Comparative analyses were first

126 established using a bivariate analysis Pearson test, using SPSS Statistics Software 20.

127 Univariate and multivariate analyses were also performed using SPSS Statistics Software 20.

128 We use the data previously collected by our team in the study cited above (11) to make a

129 comparative analysis between patients with aortic hypermetabolism and patients without.

131 **RESULTS**

132 Within the group of 51 patients who underwent ¹⁸F-FDG PET/ CT scan for persisting 133 symptoms, two were retrospectively excluded from our observational study because no proof 134 of SARS-CoV-2 infection was available. Two other patients were excluded from the analysis 135 due to a lack of clinical data in the clinical files, resulting in a cohort of 47 patients. The 136 results of the ten patients showing aortic hypermetabolism are described, and the clinical data 137 were compared with the 37 patients not showing aortic hypermetabolism (controls). 138 *Initial* ¹⁸*F*-*FDG PET/CT description of patients and follow-up* 139 Aortic hypermetabolism was incidentally detected in ten patients (Figure 1) with aortic 140 SUV values comprised between 2.52 and 4.45 and aortic/liver values between 0.88 and 1.18

141 (Table 1). The thoracic aorta was involved in these ten patients, and abdominal aortic

142 hypermetabolism was associated in three patients, the detail of the localisation of

143 hypermetabolisms is shown in Figure 2. For four patients, a second ¹⁸F-FDG PET/CT scan

144 was performed at between four and six months of follow-up. Table 1 summarises the SUV

145 values and aorta/liver ratios of ¹⁸F-FDG uptake.

146 <u>CT aortic angiography</u>

For three patients for whom we conducted a second ¹⁸F-FDG PET/CT scan, an aortic angiography CT scan was performed, and no patient showed significant parietal thickening on ascending or descending thoracic aorta nor on abdominal aorta.

150 <u>Clinical characteristics and potential risk factors</u>

The clinical characteristics of the ten patients are summarised in Table 2 and were compared with those of the 37 patients not showing aortic hypermetabolism. Of the ten patients, six were women, corresponding to a 0.6 men/women ratio. The mean age was 55 years old (44–71), the mean BMI was 25 (23–29). Four patients were previous smokers (22.5 median pack-years), one was an active smoker, and five patients had no current or past

156 smoking history. Only one patient had a cardiovascular medical history (arrythmia and 157 stroke). One patient had rheumatoid arthritis, and another had thyroiditis, no patients had 158 diabetes. At the onset of COVID-19 symptoms, two patients had a prognosis NEWS (12,13) 159 score > 5. Sixty percent of patients had chest pain, 11% had dyspnoea and 14% had a severe 160 chest CT during the acute phase of the disease. Regarding the treatment of the acute illness, 161 40% received a combination of hydroxychloroquine and azithromycin and no patients had 162 corticosteroids (Table 2). The most frequent symptoms at the clinical re-evaluation after more 163 than three weeks were dyspnoea (70%), chest pain (60%) and memory loss (60%) (Table 2). All patients had a normal C-Reactive protein rate when ¹⁸F-FDG PET /CT scan was 164 165 performed. 166 When the ten patients presenting aortic hypermetabolism were compared with the 37 167 controls, we found significant differences regarding the absence of active tobacco smoking at 168 baseline (50% vs 83%, p=0.001), dyspnoea during the acute stage of the disease (11% vs 169 52%, p=0.02) and absence of ageusia (Table 2). Regarding symptoms at re-evaluation, 170 patients with aortic hypermetabolism complained more frequently of chest pain more than 171 three weeks after the acute illness (60% vs 19%) (Table 2). The only variables that were still 172 associated with aortic hypermetabolism in univariate and multivariate analyses were the 173 presence of a chest pain at re-evaluation (ß=0.4; 95% CI: 0.185-0.7; P=0.002) and the 174 absence of active tobacco smoking ($\beta = 0.5, 95\%$ CI: 0.175-0.453). 175 DISCUSSION

We report the largest clinical case series of aortic hypermetabolism in patients with
persisting complaints more than three weeks after COVID 19 infection. We found these
vascular hypermetabolisms incidentally by performing systematic exploratory ¹⁸F-FDG
PET/CT scans in patients with persisting symptoms following COVID-19. However, the high
proportion of this feature in our cohort (21%) makes us think that this phenomenon is not due

181 to chance. The global epidemiology of aortitis is poorly known, but Japan has the highest incidence in the world, with 0.01 cases per 100,000 children per year, and its incidence in the 182 183 US and European populations has been estimated at 1–3 new cases per million per year 184 (14,15). Moreover, Sollini et al. recently reported ten patients who had recovered from SARS-COV-2 with persisting symptoms who underwent an ¹⁸F-FDG PET/CT scan (16). Of 185 them, six patients had an increased ¹⁸F-FDG uptake in blood vessels and the target-to-blood 186 187 pool ratio was significantly higher than controls in the following three vascular regions: 188 thoracic aorta, right iliac artery and femoral arteries (16). Four other case reports showing 189 signs of thoracic aortitis after SARS-CoV-2 infection can be found in the literature and are 190 presented in Table 3. These data may reinforce the hypothesis of a SARS-CoV-2 post-191 infectious aortic inflammation.

When CT aortic angiography was performed, we did not find any significant aortic
morphological changes in our patients, indicating that this may be a very early inflammatory
phenomenon. However, when ¹⁸F-FDG PET/CT re-evaluation was conducted for four patients
(after 4–6 months of follow-up), hypermetabolism was still present, suggesting a persisting
inflammation process.

197 This study is retrospective and, consequently, suffers from several biases. No previous 198 ¹⁸F-FDG PET/CT scan was available for the patients, so that we could not exclude the 199 possibility that some of our patients had a previous aortic hypermetabolism and differential 200 diagnosis could not be properly assessed. However, our patients had no more cardiovascular 201 risks factors than the controls, on the contrary, they were less frequently active smokers 202 (p=0.001), and no diabetic patients were found, suggesting that aortic hypermetabolism was 203 probably not due to previous unknown atherosclerotic lesions. Moreover, this cohort was 204 limited in size that may have prevented us from identifying more risk factors for patients with

205 aortic hypermetabolism after COVID-19. Additionally, differential diagnosis would have to
206 be eliminated through biological analysis which we did not perform.

The pathophysiological mechanism for this post-infectious vascular inflammation is unknown. Endothelial cells have ACE2 receptors that could bring SARS-CoV-2 into the cytoplasm (17) and viral particles have been described in the vascular wall by Varga *et al* (18). Consequently, it could be asked whether the inflammatory phenomenon is the result of post-infectious inflammation of whether viral persistence is involved, as is described in syphilis infection (19,20).

Surprisingly, common ¹⁸F-FDG PET/CT images found in proven primary syphilitic infection looks very similar to the images we found in COVID-19 infected patients (21,22), with the same moderately increased metabolic activity in the aortic wall (23). As is the case in syphilitic aortitis (20,24), the hypermetabolism seen in our patients appears to particularly affect the thoracic segment. In 2018, Yuan *et al* described clinical sign panels in 52 patients with a syphilitic aortic aneurysm (20), and the main symptoms were chest pain, as we found in our cohort.

220 Cases of large-vessel aortic inflammation due to viral infections have already been 221 reported in the literature. In 2016, Don Gilden and colleagues described an autopsy case series 222 of 11 patients infected with Varicella Zoster Virus (VZV) and compared them to 28 controls. 223 11/11 of the aortas had the VZV antigen detected by immunohistochemistry and PCR, 224 associated with pathologically-verified granulomatous arteritis (25). As a well-known 225 phenomenon, cases of HIV-related aortitis have also been described, as Takayasu-like 226 disease, mainly on large and medium vessels, with a high risk of aortas an cerebral aneurysms 227 (26). Finally, we found rare case reports of aortitis secondary to Hepatitis C virus (HCV)-228 associated cryoglobulinemia (27), aorta mesoarteritis with media destruction in Chronic

Active Epstein-Barr Virus (EBV) infection, with a positive EBV PCR in the aortic wall (28),

and Cytomegalovirus (CMV)-linked atherosclerotic aortitis found in mice (29).

231 Considering this data, there is a need for close follow-up of these ten post- COVID-19 232 patients with aortic hypermetabolism, to understand whether the inflammation that we have 233 observed is a post-infectious sequelae or an ongoing process. New CT angiography should be 234 performed in the follow-up to identify whether morphological changes occur in the aortic 235 walls of these patients. The possible emergence of an aortic aneurysm or dissection, years 236 after acute infection, as is the case in *Treponema pallidum* infection (20,30), is a real matter 237 of concern, as is its potential treatment.

238 CONCLUSION:

Our data should prompt clinicians to use ¹⁸F-FDG PET/CT scans to search for aortic
 hypermetabolism in patients with persisting symptoms after COVID-19, especially those
 complaining from atypical chest pain.

242

245	Author's contributions:
246	-Pierre Dudouet wrote the first draft of the MD
247	-Serge Camilleri and Eric Guedj interpreted the results of the 18F FDG PET/CT scan and
248	wrote the nuclear imaging part of the MS
249	-Alexis Jacquier interpreted and wrote the aortic CT angiography part of the MS
250	-Didier Raoult revised the different versions of the MS
251	-Carole Eldin designed the work, performed the statistical analyses and revised the different
252	versions of the MS
253	
254	
255	Conflicts of interest/Competing interests
256	The authors declare that they have no conflicts of interest
257	
258	

259					
260 261	References				
262					
263	1. World Health organization Coronavirus 19 dashboard. https://covid19.who.int/.				
264					
265	2. Gupta A, Madhavan MV, Sehgal K, Nair N, Mahajan S, Sehrawat TS, et al.				
266	Extrapulmonary manifestations of COVID-19. Nat Med. juill 2020;26(7):1017-32.				
267					
268	3. Ladds E, Rushforth A, Wieringa S, Taylor S, Rayner C, Husain L, et al. Persistent				
269	symptoms after Covid-19: qualitative study of 114 "long Covid" patients and draft quality				
270	principles for services. BMC Health Serv Res. déc 2020;20(1):1144.				
271					
272	4. Mandal S, Barnett J, Brill SE, Brown JS, Denneny EK, Hare SS, et al. 'Long-COVID':				
273	a cross-sectional study of persisting symptoms, biomarker and imaging abnormalities following				
274	hospitalisation for COVID-19. Thorax. 10 nov 2020;thoraxjnl-2020-215818.				
275	5. Baig AM. Baig AM. Chronic COVID Syndrome: Need for an appropriate medical				
276	terminology for Long-COVID and COVID Long-Haulers. J Med Virol. 2020 Oct 23. doi:				
277	10.1002/jmv.26624. Epub ahead of print. PMID: 33095459. :4.				
278					
279	6. Huang C, Huang L, Wang Y, Li X, Ren L, Gu X, et al. 6-month consequences of				
280	COVID-19 in patients discharged from hospital: a cohort study. The Lancet. janv				
281	2021;S0140673620326568.				
282					
283	7. Chiesa-Estomba CM, Lechien JR, Radulesco T, Michel J, Sowerby LJ, Hopkins C, et				
284	al. Patterns of smell recovery in 751 patients affected by the COVID-19 outbreak. Eur J Neurol.				
285	2020 Nov;27(11):2318–21.				
286					
287	8. Spagnolo P, Balestro E, Aliberti S, Cocconcelli E, Biondini D, Casa GD, et al.				
288	Pulmonary fibrosis secondary to COVID-19: a call to arms? The Lancet Respiratory Medicine				
289	[Internet]. 2020 May [cited 2020 Jul 17]; Available from:				
290	https://linkinghub.elsevier.com/retrieve/pii/S2213260020302228.				
291					
292					

293	9. Kattar N, Do TM, Unis GD, Migneron MR, Thomas AJ, McCoul ED. Olfactory						
294	Training for Postviral Olfactory Dysfunction: Systematic Review and Meta-analysis.						
295	Otolaryngol Head Neck Surg. 2020 Jul 14;194599820943550.						
296							
297	10. Guedj E, Million M, Dudouet P, Tissot-Dupont H, Bregeon F, Cammilleri S, et al. 18F-						
298	FDG brain PET hypometabolism in post-SARS-CoV-2 infection: substrate for						
299	persistent/delayed disorders? Eur J Nucl Med Mol Imaging [Internet]. 30 juill 2020						
300	http://link.springer.com/10.1007/s00259-020-04973-x						
301							
302	11. Guedj E. Guedj E, Campion JY, Dudouet P, 18F-FDG brain PET hypometabolism in						
303	patients with long Covid, Eur J Nucl Med Mol Imaging. 16 Jan 2021.						
304							
305	12. COVID-19 rapid guideline: critical care in adults. Nationnal Institute for Health and						
306	Care Excellence, United Kingdom. 2020;14.						
307							
308	13. Goulden R, Hoyle M-C, Monis J, et al. qSOFA, SIRS and NEWS for predicting						
309	inhospital mortality and ICU admission in emergency admissions treated as sepsis. Emerg Med						
310	J 2018; 35:345–349.						
311							
312	14. Bossone E, Pluchinotta FR, Andreas M, Blanc P, Citro R, Limongelli G, et al. Aortitis.						
313	Vascul Pharmacol. mai 2016;80:1-10.						
314							
315	15. Gornik HL, Creager MA. Aortitis. Circulation. 10 juin 2008;117(23):3039-51.						
316							
317	16. Sollini M, Ciccarelli M, Cecconi M, Aghemo A, Morelli P, Gelardi F, et al. Vasculitis						
318	changes in COVID-19 survivors with persistent symptoms: an [18F]FDG-PET/CT study. Eur						
319	J Nucl Med Mol Imaging [Internet]. 30 oct 2020 [cité 26 nov 2020]; Disponible sur:						
320	http://link.springer.com/10.1007/s00259-020-05084-3						
321							
322	17. Groß S, Jahn C, Cushman S, Bär C, Thum T. SARS-CoV-2 receptor ACE2-dependent						
323	implications on the cardiovascular system: From basic science to clinical implications. J Mol						
324	Cell Cardiol. juill 2020;144:47-53.						
325							
326							

327	18. Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, et al.					
328	Endothelial cell infection and endotheliitis in COVID-19. The Lancet. mai					
329	2020;395(10234):1417-8.					
330						
331	19. Ro A, Mori S, Kageyama N, Chiba S, Mukai T. Ruptured Syphilitic Aneurysm: A Cause					
332	of Sudden Death in a Man with Human Immunodeficiency Coinfection. J Forensic Sci. sept					
333	2019;64(5):1555-8.					
334						
335	20. Yuan S-M. Syphilitic aortic aneurysm. Z Für Rheumatol. oct 2018;77(8):741-8.					
336						
337	21. Joseph Davey D, Kojima N, Konda KA, Gupta P, Leon SR, Calvo GM, et al. Transient					
338	aortitis documented by positron emission tomography in a case series of men and transgender					
339	women infected with syphilis. Sex Transm Infect. déc 2017;93(8):551-5.					
340						
341	22. Treglia G, Taralli S, Maggi F, Coli A, Lauriola L, Giordano A. Usefulness of 18F-FDG					
342	PET/CT in Disease Extent and Treatment Response Assessment in a Patient With Syphilitic					
343	Aortitis: Clin Nucl Med. avr 2013;38(4):e185-7.					
344						
345	23. Balink H, Spoorenberg A, Houtman PM, Brandenburg A, Verberne HJ. Early					
346	recognition of aortitis of the aorta ascendens with 18F-FDG PET/CT: syphilitic? Clin					
347	Rheumatol. mai 2013;32(5):705-9.					
348						
349	24. Roberts WC, Barbin CM, Weissenborn MR, Ko JM, Henry AC. Syphilis as a Cause of					
350	Thoracic Aortic Aneurysm. Am J Cardiol. oct 2015;116(8):1298-303.					
351						
352	25. Gilden D, White T, Boyer PJ, Galetta KM, Hedley-Whyte ET, Frank M, et al. Varicella					
353	Zoster Virus Infection in Granulomatous Arteritis of the Aorta. J Infect Dis. 15 juin					
354	2016;213(12):1866-71.					
355						
356	26. Pillay B, Ramdial P, Naidoo D. HIV-associated large-vessel vasculopathy: a review of					
357	the current and emerging clinicopathological spectrum in vascular surgical practice: review					
358	article. Cardiovasc J Afr. 30 avr 2015;26(2):70-81.					
359						

360	27. Lenhart A, Meighani A, Hassan M, Gordon S. Hepatitis C Virus-Associated Aortitis						
361	Caused by Type I Cryoglobulins: ACG Case Rep J. 2017;4(1):e114.						
362							
363	28. Murakami K, Ohsawa M, Hu S-X, Kanno H. Murakami K, Ohsawa M, Hu SX, Kanno						
364	H, Aozasa K, Nose M. Large-vessel arteritis associated with chronic active Epstein-Barr via	us					
365	infection. Arthritis Rheum. 1998 Feb;41(2):369-73. doi: 10.1002/152	29-					
366	0131(199802)41:2<369::AID-ART22>3.0.CO;2-S. PMID: 9485096. :5.						
367							
368	29. Berencsi K, Endresz V, Klurfeld D, Kari L, Kritchevsky D, Gönczöl E. Ea	rly					
369	Atherosclerotic Plaques in the Aorta Following Cytomegalovirus Infection of Mice. Cell Adhes						
370	Commun. janv 1998;5(1):39-47.						
371							
372	30. Pivatto Júnior F, Finkler BS, Torres FS, Schaefer PG, Sprinz E. Aneurysm a	nd					
373	dissection in a patient with syphilitic aortitis. Braz J Infect Dis. mai 2017;21(3):349-52.						
374							

Table 1. SUV max values and aorta/liver ratios for the ten patients

377

	1 st PET-CT scan			2 nd PET-CT scan		
	Thoracic Aortic SUV max	Abdominal Aortic SUV max	Aorta/liver ratio	Thoracic Aortic SUV max	Abdominal PET-1 Aortic SUV max	Aorta/liver ratio
Patient 1	3.05	//	0.9	//	//	//
Patient 2	2.52	//	0.89	//	//	//
Patient 3	3.35	3.87	0.88/0.99*	//	//	//
Patient 4	4.25	4.71	0.98/1.08*	3.65	3.85	0.89/0.94*
Patient 5	3.55	//	0.96	4.09	//	1.18
Patient 6	3.47	//	0.98	3.17	//	0.88
Patient 7	4.45	4.88	0.91/1*	3.74	4.38	0.66/0.77*
Patient 8	2.56	//	0.88	//	//	//
Patient 9	2.93	//	1.08	//	//	//
Patient 10	3.08	//	0.98	//	//	//

378

379 Legend:

380 1st PET-CT scan: first ¹⁸F-FDG PET/CT

381 2nd PET-CT scan: second ¹⁸F-FDG PET/CT, when available

382 *Thoracic aorta liver ratio/Abdominal aorta liver ratio

383 SUV: Standardised Uptake Value

385 386 Table 2. Clinical characteristics of patients with aortic hypermetabolism, compared to

	Aortic hypermetabolism n= 10	No aortic hypermetabolism n= 37	P (Pearson)
Mean Age	55	52	0.4
Sex ratio (W/M)	0.6 (6/10)	0.45 (17/37)	0.6
Mean BMI	25	28	0.069
High Blood Pressure	1 (10%)	8 (2.7%)	0.4
Diabetes	0	9 (24%)	0.09
No current or past smoking			
	5 (50%)	31(83%)	0.001
Initial symptoms	Aortic hypermetabolism n= 10	No aortic hypermetabolism n= 37	P (Pearson)
Dyspnoea	1/9 (11%)	19/36 (52%)	0.02
Chest pain	3/9 (33%)	11/36 (30%)	0.5
Anosmia	2/9(22%)	13/36 (36%)	0.35
Ageusia	0	14/37(37.8%)	0.02
NEWS Score>= 5	2/6 (33%)	9/27(33%)	1
Severe initial Chest CT Scan	1/7(14%)	10/29 (34%)	0.22
Delay between symptoms			
and treatment	4.30 (0.24-8.36)	2.76 (1.66-3.86)	0.27
Delay treatment> 3 days	6/10 (60%)	18/37 (48%)	0.5
Delay treatment>5 days	3/10 (30%)	8/37 (22%)	0.6
Azithromycin	6/10 (60%)	26/34 (76%)	0.3
НСQ	5/10 (50%)	26/35(74%)	0.2
3GC	1/10 (10%)	14/32 (44%)	0.05
Other Antibiotics	2/10 (20%)	3/32 (9%)	0.35
HCQ + Azithromycin	4/10 (40%)	23/35 (66%)	0.1
HCQ + Azithromycin >72H	4/10 (40%)	23/35 (66%)	0.1

387 patients without aortic hypermetabolism after COVID-19

High blood pressure	1/10 (10%)	7/35(20%)	0.5
treatment	1/10 (10/0)	1755(2070)	0.5
Week 3 symptoms			
Dyspnoea	7/10(70%)	26/36 (72%)	0.59
Chest pain	6/10 (60%)	7/37 (19%)	0.017
Diffuse pain	4/10 (40%)	12/36(33%)	0.48
Anosmia	2/10 (20%)	11/36 (31%	0.139
Ageusia	1/10 (10%)	8/36 (22%)	0.36
Memory loss	6/10 (60%)	19/37 (51%)	0.45
Sleep disorders	3/9 (33%)	14/36 (38.9%)	0.5

W: Women; M: Men; BMI: Body Mass Index; PY: package-year, CT: computerised tomography, CRP: C-reactive protein, ICU: intensive care unit, HCQ: hydroxychloroquine, 3GC: 3rd generation cephalosporins H: hours

	Patient A	Patient B	Patient C	Patient D
Sex, Age, country	M, 71, UK	M, 71, UK	F, 69, Spain	M, 50, Italian
Background	No	Cholecystectomy	No	No
Delay between disease and imagery	15 days	90 days	NA	90 days
Aortic segments	Thoracic	Arch	Thoracic, abdominal	Arch, descendant thoracic
Symptoms	Chest pain	Chest pain	No symptom	Chest pain, fatigue
Imagery	Injected CT Scan	Injected CT scan	¹⁸ F-FDG PET-TDM	¹⁸ F-FDG PET-TDM
Treatment	CTC	CTC	No	No
Imagery control	Regression	Regression	No	NA
Outcomes	Good	Good	Good	Good
Reference	Shergill et al, Eur. Heart J. August 2020	Zou et al, Rheu adv in Pract, Oct 2020	Carmen Davila et al, Rev Esp Med Nucl Im Mol, 2020	Solini et al, Eur J Nucl med mol imaging, Oct 2020

Table 3. Aortitis cases after COVID-19 in the literature.

Table 5. Description of aortic abnormalities found in literature in confirmed COVID-19 cases. UK: United Kingdom, M: male, F: female, CTC: corticosteroids, PET: positron emission tomography, FDG: fluoro-2-deoxyglucose, CT: computerised tomography, TDM: tomodensitometry.

393 Figure 1. 18F-FDG PET CT showing aortic hypermetabolism in two patients.

- 394 Panel A: 48-year-old woman (Patient 3)
- 395 Panel B: 71-year-old man (Patient 4)
- **Figure 2. Schematic representation of the localisation of aortic hypermetabolism for the**
- 397 ten patients.