1	TITLE PAGE
2	
3	Type of article: Full length article
4	
5	Full-length title:
6	Global discrepancies between numbers of available SARS-CoV-2 genomes and human
7	development indexes at country scales
8	Short title (for the running head):
9	SARS-CoV-2 genome sequencing at country scales
10	
11	Author list: Philippe COLSON ^{1,2} , Didier RAOULT ^{1,2} *
12	Affiliations: ¹ IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille,
13	France; ² Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD),
14	Assistance Publique - Hôpitaux de Marseille (AP-HM), MEPHI, 27 boulevard Jean Moulin,
15	13005 Marseille, France
16	* Corresponding author: Didier Raoult, IHU - Méditerranée Infection, 19-21 boulevard
17	Jean Moulin, 13005 Marseille, France. Tel.: +33 413 732 401, Fax: +33 413 732 402; email:
18	didier.raoult@gmail.com
19	
20	Word count: abstract, 250; text, 1,650
21	Figures: 3; Table: 1; References: 27.
22	Supplementary material: Figures: 3; Table: 1
23	
24	Keywords: SARS-CoV-2; genome; next-generation sequencing; country-scale development;
25	world; variant.

1	ABSTRACT
2	
3	Background: SARS-CoV-2 has emerged in China for more than one year. Some variants are
4	currently considered as of great concern.
5	Objectives: We aimed to analyze the numbers of SARS-CoV-2 genome sequences obtained in
6	different countries worldwide until January 2021.
7	Study design: As on the 28 th of January 2021, we downloaded from the GISAID database the
8	deposited genome sequence origin, and from the "Our world in data" website numbers of
9	SARS-CoV-2-diagnosed cases, numbers of SARS-CoV-2-associated deaths, population size,
10	life expectancy, gross domestic product (GDP) per capita, and human development index per
11	country. Files were merged and data were analyzed using the Microsoft Excel software.
12	Results: A total of 450,968 SARS-CoV-2 genomes originating from 135 countries on the 5
13	continents were available. When considering the 19 countries for which the number of
14	genomes per 100 deaths was >100, six were in Europe, while eight were in Asia, three were in
15	Oceania and two were in Africa. Six (30%) of these countries are beyond rank 75 regarding
16	human development index and 4 (20%) are beyond rank 80 regarding GDP per capita.
17	Moreover, the comparisons of the number of genomes sequenced per 100 deaths to the human
18	development index by country show that some European Western countries have released
19	similar or lower numbers of genomes than many African or Asian countries with a lower
20	human development index.
21	Conclusions: Previous data highlight great discrepancies between the numbers of available

SARS-CoV-2 genomes per 100 cases and deaths and the ranking of countries regarding
wealth and development.

TEXT 26 27 **1. Introduction** 28 29 The SARS-CoV-2 pandemic, which has spread for almost a year, has generated 30 considerable global efforts in the sequencing, collection, and analysis of viral genomes. 31 Sequence databases and various tools for storing, downloading, classifying and analyzing 32 these genomes have quickly become available [1,2]. In particular, GISAID sequence database 33 hosts a collection of SARS-CoV-2 genomic sequences obtained worldwide 34 (https://www.gisaid.org/) [1]. Our team has produced, unlike other laboratories in our country, 35 a large number of genome sequences for SARS-CoV-2, in particular when the incidence of 36 cases considerably re-increased during the summer [3-6]. This enabled us very early to point 37 out the existence of variants (which are strains that differ from all others by a set of several 38 mutations and have reached a detectable population size) during summer 2020 [4]; we named 39 those identified in our institute Marseille-1 to Marseille-10. They have been responsible for 40 successive or overlapping epidemics, before it became established at our country scale. An 41 earlier study analyzed the number of SARS-CoV-2 genomes per reported COVID-19 case 42 nationwide, based on the sequences available in the GISAID database in early September 43 2020. It pointed out substantial differences between countries worldwide, including between 44 those on a same continent, as well as the good level of sequencing efforts of some low- and 45 middle-income countries [7].

46

47 **2. Objectives**

Here we wanted to analyze the numbers of genome sequences of SARS-CoV-2
obtained in the different countries of the world as on end of January 2021, and to relate them
to the numbers of SARS-CoV-2 cases and SARS-CoV-2-associated deaths and to the wealth

51 and investment into health of these countries.

3. Materials and methods

54	We downloaded from the GISAID database (https://www.gisaid.org/) [1] as on the
55	28 th of January 2021 the nextmeta file that contains the origin of deposited genome sequences.
56	We also downloaded as on the same day from the "Our world in data" website
57	(https://ourworldindata.org/) the numbers of SARS-CoV-2-diagnosed cases and SARS-CoV-
58	2-associated deaths per country as well as various epidemiological data among which
59	population size, life expectancy, gross domestic product (GDP) per capita, or human
60	development index (https://covid.ourworldindata.org/data/owid-covid-data.xlsx). Files were
61	merged and data were analyzed using the Microsoft Excel software
62	(https://www.microsoft.com). We standardized the numbers of genomes sequenced per 100
63	SARS-CoV-2-diagnosed cases and per 100 SARS-CoV-2-associated deaths. Data were
64	plotted using the Microsoft Excel and the GraphPad Prism v.5 (https://www.graphpad.com)
65	softwares.
66	
67	4. Results
68	A total of 450,968 SARS-CoV-2 genomes was available from the GISAID database
69	on January 28th, 2020. They originated from the 5 continents, from 135 countries and 8,919
70	laboratories. The mean (±standard deviation) number of genomes per country was
71	3,340±18,498 (range, 1-192,556). The mean number of genomes per 100 SARS-CoV-2-
72	associated deaths per country was 270 \pm 1,422 (0.06-14,397) and the mean number of genomes
73	per 100 SARS-CoV-2 diagnosed cases per country was 2,198±9,105 (0.001-70).
74	The top 100 source laboratories accounted for 72% ($n=324,837$) of available
75	genomes. They were mostly, for 62% of them, located in the USA (n=24), in England (21), in

76	Denmark (11), and in the Netherlands (6). When considering the 19 countries for which the
77	number of genomes per 100 deaths was >100, six were in Europe (Iceland (number of
78	genomes per 100 deaths= 14,397), Denmark (1,680), Luxembourg (405), Norway (229), UK
79	(186), and Finland (174)), while eight were in Asia (Singapore (5,969), Taiwan (2,143),
80	Thailand (653), Vietnam (406), Mongolia (350), Japan (310), Brunei (167), and South Korea
81	(117)), three were in Oceania (New Zealand (4,380), Australia (1,902), and Papua New
82	Guinea (144)) and two were in Africa (Gambia (344), and Equatorial Guinea (110)) (Figures
83	1, 2; Table 1). In addition, six (30%) of these countries were beyond rank 75 regarding
84	human development index among the 135 countries studied here: Thailand (human
85	development index= 0.755), Vietnam (0.694), Mongolia (0.741), Gambia (0.460), Papua New
86	Guinea (0.544) and Equatorial Guinea (0.591). Moreover, 4 (20%) were beyond rank 80
87	regarding GDP per capita: Vietnam (GDP per capita= 6,172), Mongolia (11,841), Gambia
88	(1,562), and Papua New Guinea (3,823). Similarly, when considering the 24 countries for
89	which the number of genomes per 100 diagnosed cases was >1, eight were in Asia (Taiwan,
90	Vietnam, Japan, Thailand, Singapore, Brunei, South Korea, and China) and three were in
91	Africa (Gambia, Equatorial Guinea, and Democratic Republic of Congo). In addition, seven
92	(29%) of these countries were beyond rank 75 regarding human development index: Gambia
93	(human development index= 0.460), Vietnam (0.694), Thailand (0.755), Equatorial Guinea
94	(0.591), Democratic Republic of Congo (0.457), Papua New Guinea (0.544), and China
95	(0.752), and 4 (21%) were beyond rank 100 regarding GDP per capita: Gambia (GDP per
96	capita= 1,562), Vietnam (6,172), Democratic Republic of Congo (808), and Papua New
97	Guinea (3,823). Moreover, the comparisons of the number of genomes sequenced per 100
98	deaths and the human development index by country show that some European Western
99	countries such as France (5.9 genomes per 100 deaths; human development index= 0.901),
100	Germany (8.2; 0.936), or Italy (3.4; 0.880) have released similar or lower numbers of

genomes than many African or Asian countries with a lower human development index,
among which Egypt (4.0 genomes per 100 deaths; human development index= 0.696),
Zimbabwe (8.7; 0.535), Nigeria (19; 0.532), Senegal (22; 0.505), Democratic Republic of
Congo (54; 0.457), Gambia (334; 0.460), Bangladesh (9.8; 0.608), and China (20; 0.752)
(Figure 3). Similar observations can be done when comparing the number of genomes
sequenced per 100 deaths and the GPD per capita or life (Figure 4) expectancy by country.

108 **5. Discussion**

109 This analysis conducted 10 months after WHO declared COVID-19 a pandemic 110 (https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-111 remarks-at-the-media-briefing-on-covid-19---11-march-2020) shows great disparities 112 according to the country in the numbers of SARS-CoV-2 genomes available per 100 cases 113 and deaths, as well as substantial discrepancies between these numbers and the ranking of 114 countries based on their wealth and development. This shows that several developed countries 115 have either a technological or organizational delay in terms of high throughput sequencing, 116 and/or an insufficient purposefulness to monitor SARS-CoV-2 genetic and proteic diversity 117 and variability. In contrast, several developing countries exhibited wills and capacities to 118 sequence SARS-CoV-2 genomes, and scaled-up next-sequencing technologies [8]. This is 119 another example that the SARS-CoV-2 pandemic is reshuffling the cards globally. 120 Such a worldwide distribution of the availability of SARS-CoV-2 genomes is very 121 interesting. Indeed, several issues related to SARS-CoV-2 genotypic features are currently in 122 the spotlight, which are of paramount importance. Firstly, different viral variants that have 123 emerged appear to be associated with different epidemic dynamics and clinical severities. 124 What we observed for the first SARS-CoV-2 variant that we had identified in July 2020,

125 which originated from the African continent and was named Marseille-1 [5], has reproduced

126	with the Marseille-4 variant (also known as clade 20A.EU2 [9]), and is currently observed
127	with the UK (20I/501Y.V1), South African (20I/501Y.V1), and Brazilian (20I/501Y.V1)
128	variants. Thus, some of these variants have demonstrated or suspected greater
129	transmissibilities and became the predominant strains nationwide, and they were reported to
130	cause diseases with different severities [5,10-14]. In addition, all these viral variants harbor
131	amino acid changes in the viral spike, the protein that enables virus entry into human cells
132	through binding to the ACE2 receptor and is also the main target of neutralizing antibodies
133	elicited by natural infection or vaccine immunization [15-17]. Accordingly, changes in the
134	spike amino acid sequence of these variants have been reported to increase viral binding to the
135	ACE2 receptor and to allow virus escape from neutralizing antibodies induced by prior
136	infection or vaccine immunization [17-19]. Moreover, therapies such as remdesivir,
137	convalescent plasma, or cocktails of anti-spike antibodies, particularly in
138	immunocompromised patients, could increase the mutation rate of SARS-CoV-2 genomes
139	and have been associated with the rapid occurrence of several amino acid changes within the
140	spike. Among these amino acid changes, some are present in the UK, South African and
141	Brazilian variants [16,20-22]. Thus, it should have been necessary, in the cases of absence of
142	viral clearance after administration of these treatments to systematically sequence SARS-
143	CoV-2 genomes and check for the occurrence of mutations. For example, this should have
144	been performed in Hueso et al.'s study for the 5 patients who were not cleared of the virus
145	after convalescent plasmatherapy in order to determine whether mutations located in the spike
146	had not been selected by the transfused antibodies [23]. Also, cases are increasingly reported
147	of patients who experienced a second infection with SARS-CoV-2 several months after a first
148	infection was followed by viral clearance [24-26]. In our institute, two successive infections
149	with different variants have been observed to date in nearly fifty patients [27]. Systematic
150	sequencing of the genomes of the viruses involved in the two distinct infections is there too

151 essential to be able understanding which viral strains can resist, through their mutation pattern, to immune responses elicited by a first infection with a distinct strain. Finally, in the 152 153 current setting of massive vaccine strategies that in most Western countries are exclusively 154 based on the spike protein, it is absolutely critical to analyze the viral genomes in all cases of 155 vaccine failures, in order to determine which viral mutants and variants are involved. In our 156 country, for example, the majority of SARS-CoV-2 strains that currently circulate have a 157 spike protein whose amino acid sequence differs from that used in vaccines, which 158 corresponds to strains that no longer currently exist or are very minoritary [6,10] 159 (https://nextstrain.org/groups/neherlab/ncov/france). Under these conditions, the question of 160 vaccine efficacy arises in the forefront. 161 Overall, in a new disease caused by viruses with a high mutation rate, as we have 162 learned for a long time with human immunodeficiency virus and hepatitis C virus, it is 163 absolutely necessary to survey and monitor viral genome sequences to detect mutants and 164 variants, in order to identify possible differences in terms of transmissibility, clinical severity, 165 resistance to treatments, and escape from vaccine immunity as well as natural immunity. 166 Considering previous data, we believe that broad scale SARS-CoV-2 genomic surveillance 167 should have been mandatory for all developed countries that had the means to perform it. 168 169 170 Availability of data and materials 171 Data analyzed have been downloaded from and are available in the GISAID database 172 (https://www.gisaid.org/) and the "Our world in data" website (https://ourworldindata.org/).

173

174 Authors' contributions

175 Conceived and designed the experiments: DR and PC. Contributed for the materials/analysis

176 too	ls: PC. Ana	lyzed the dat	a: DR and PC	. Wrote the pa	aper: DR and PC.
---------	-------------	---------------	--------------	----------------	------------------

178 Acknowledgments

- 179 This manuscript has been edited by a native English speaker.
- 180

181 Funding

- 182 This work was supported by the French Government under the "Investments for the Future"
- 183 program managed by the National Agency for Research (ANR), Méditerranée-Infection 10-
- 184 IAHU-03.
- 185

186 **Competing interests**

- 187 The authors have no conflicts of interest to declare. There are no financial or personal
- relationship with other people or organisations that could inappropriately influence their
- 189 work.
- 190
- 191
- 192

193 104		REFERENCES
194 195 196	[1]	Y. Shu, J. McCauley. GISAID: Global initiative on sharing all influenza data - from vision to reality. Euro. Surveill. 22 (2017) 30494.
197 198	[2]	J. Hadfield, C. Megill, S. M. Bell, J. Huddleston, B. Potter, C. Callender, et al. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics. 34 (2018) 4121-3.
199 200 201 202	[3]	A. Levasseur, J. Delerce, A. Caputo, L. Brechard, P. Colson, J. C. Lagier, et al. Genomic diversity and evolution of coronavirus (SARS-CoV-2) in France from 309 COVID-19-infected patients. bioRxiv (2020) doi: https://doi.org/10.1101/2020.09.04.282616.
203 204 205 206	[4]	P. Colson, A. Levasseur, J. Delerce, H. Chaudet, V. Bossi, M. Ben Khedher, P. E. Fournier, J. C. Lagier, D. Raoult. Dramatic increase in the SARS-CoV-2 mutation rate and low mortality rate during the second epidemic in summer in Marseille. IHU pre-prints (2020) doi: https://doi.org/10.35088/68c3-ew82.
207 208 209 210	[5]	P. Colson, A. Levasseur, P. Gautret, F. Fenollar, H. Thuan, V, J. Delerce, et al. Full- length title: Introduction into the Marseille geographical area of a mild SARS-CoV-2 variant originating from sub-Saharan Africa: An investigational study. Travel. Med Infect Dis 40 (2021) 101980.
211 212 213	[6]	P. E. Fournier, P. Colson, A. Levasseur, P. Gautret, L. Luciani, M. Bedotto, et al. Genome sequence analysis enabled deciphering the atypical evolution of COVID-19 in Marseille, France. medRxiv (2021) doi: https://doi.org/10.35088/kmct-tj43.
214 215	[7]	Y. Furuse. Genomic sequencing effort for SARS-CoV-2 by country during the pandemic. Int. J. Infect. Dis. 103 (2020) 305-7.
216 217 218	[8]	B. O. Motayo, O. O. Oluwasemowo, B. A. Olusola, P. A. Akinduti, O. T. Arege, Y. D. Obafemi, et al. Evolution and genetic diversity of SARS-CoV-2 in Africa using whole genome sequences. Int. J. Infect. Dis. 103 (2020) 282-7.
219 220 221	[9]	E. B. Hodcroft, M. Zuber, S. Nadeau, K. H. D. Crawford, J. D. Bloom, D. Veesler, et al. Emergence and spread of a SARS-CoV-2 variant through Europe in the summer of 2020. Nov 27;2020.10.25.20219063. doi: 10.1101/2020.10.25.20219063. Preprint.
222 223 224	[10]	P. E. Fournier, P. Colson, A. Levasseur, C. Devaux, P. Gautret, M. Bedotto. Emergence and outcome of the SARS-CoV-2 "Marseille-4" variant. IHU pre-prints (2021) doi: https://doi.org/10.35081/xcrm-6t77.
225 226 227	[11]	K. Leung, M. H. Shum, G. M. Leung, T. T. Lam, J. T. Wu. Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020. Euro. Surveill. 26 (2021) 2002106.
228 229 230 231	[12]	H. Tegally, E. Wilkinson, M. Giovanetti, A. Iranzadeh, V. Fonseca, J. Giandhari, et al. Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. medRxiv (2021) doi: https://doi.org/10.1101/2020.12.21.20248640.

- [13] N. R. Faria. Genomic characterisation of an emergent SARS-CoV-2 lineage in Manaus:
 preliminary findings. Virological org. (2021) https://virological.org/t/genomic characterisation-of-an-emergent-sars-cov-2-lineage-in-manaus-preliminary findings/586.
- [14] Ecdc. Risk of spread of new SARS-CoV-2 variants of concern in the EU/EEA first
 update. Ecdc risk assessment https://www.ecdc.europa.eu/en/publications-data/covid 19-risk-assessment-spread-new-variants-concern-eueea-first-update#no-link. 21 Jan
 2021.
- [15] J. Lan, J. Ge, J. Yu, S. Shan, H. Zhou, S. Fan, et al. Structure of the SARS-CoV-2 spike
 receptor-binding domain bound to the ACE2 receptor. Nature 581 (2020) 215-20.
- [16] S. A. Kemp, D. A. Collier, R. Datir, I. Ferreira, S. Gayed, A. Jahun, et al. Neutralising
 antibodies in Spike mediated SARS-CoV-2 adaptation. medRxiv (2020) doi:
 https://doi.org/10.1101/2020.12.05.20241927.
- [17] A. J. Greaney, A. N. Loes, K. H. D. Crawford, T. N. Starr, K. D. Malone, H. Y. Chu, et
 al. Comprehensive mapping of mutations to the SARS-CoV-2 receptor-binding domain
 that affect recognition by polyclonal human serum antibodies. bioRxiv (2020) doi:
 https://doi.org/10.1101/2020.12.31.425021.
- [18] Z. Liu, L. A. VanBlargan, L. M. Bloyet, P. W. Rothlauf, R. E. Chen, S. Stumpf, et al. Landscape analysis of escape variants identifies SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization. bioRxiv (2020) doi: https://doi.org/10.1101/2020.11.06.372037.
- [19] D. Ho, P. Wang, L. Liu, S. Iketani, Y. Luo, Y. Guo, et al. Increased Resistance of
 SARS-CoV-2 Variants B.1.351 and B.1.1.7 to Antibody Neutralization. Res Sq. (2021)
 doi: https://doi.org/10.1101/2021.01.25.428137.
- [20] B. Choi, M. C. Choudhary, J. Regan, J. A. Sparks, R. F. Padera, X. Qiu, et al.
 Persistence and Evolution of SARS-CoV-2 in an Immunocompromised Host. N. Engl. J Med. 383 (2020) 2291-3.
- [21] M. K. Hensley, W. G. Bain, J. Jacobs, S. Nambulli, U. Parikh, A. Cillo, et al. Intractable
 COVID-19 and Prolonged SARS-CoV-2 Replication in a CAR-T-cell Therapy
 Recipient: A Case Study. Clin. Infect. Dis. (2021) Jan 28;ciab072. doi:
 10.1093/cid/ciab072. Online ahead of print.
- [22] E. Khatamzas, A. Rehn, M. Muenchhoff, J. Hellmuth, E. Gaitzsch, T. Weiglein, et al.
 Emergence of multiple SARS-CoV-2 mutations in an immunocompromised host.
 medRxiv (2021) doi: https://doi.org/10.1101/2021.01.10.20248871.
- [23] T. Hueso, C. Pouderoux, H. Péré, A. L. Beaumont, L. A. Raillon, F. Ader, et al.
 Convalescent plasma therapy for B-cell-depleted patients with protracted COVID-19.
 Blood 136 (2020) 2290-5.
- [24] K. K. To, I. F. Hung, J. D. Ip, A. W. Chu, W. M. Chan, A. R. Tam, et al. COVID-19 reinfection by a phylogenetically distinct SARS-coronavirus-2 strain confirmed by whole
 genome sequencing. Clin. Infect. Dis. (2020) Aug 25;ciaa1275. doi:
 10.1093/cid/ciaa1275. Online ahead of print.

- [25] P. Colson, M. Finaud, N. Levy, J. C. Lagier, D. Raoult. Evidence of SARS-CoV-2 reinfection with a different genotype. J. Infect. (2020) Nov 15;S0163-4453(20)30706-4.
 doi: 10.1016/j.jinf.2020.11.011. Online ahead of print.
- [26] J. I. Cohen, P. D. Burbelo. Reinfection with SARS-CoV-2: Implications for Vaccines.
 Clin. Infect. Dis. (2020) Dec 18;ciaa1866. doi: 10.1093/cid/ciaa1866. Online ahead of
 print.
- [27] P. Brouqui, P. Colson, C. Melenotte, L. Houhamdi, M. Bedotto, C. Devaux, et al.
 COVID re-infection. IHU pre-print. (2021) 2021. doi: https://doi.org/10.35088/z7vhe331.

284

285	FIGURE LEGEND
286	
287	Figure 1. Number of SARS-CoV-2 genomes per 100 SARS-CoV-2-diagnosed cases (left,
288	orange) and per 100 deaths (right, blue) according to continent/region.
289	
290	Figure 2. Number of SARS-CoV-2 genomes per 100 SARS-CoV-2-associated deaths
291	according to continent/region.
292	
293	Figure 3. Number of SARS-CoV-2 genomes per 100 SARS-CoV-2-associated deaths vs.
294	human development index.
295	For a better legibility of the graph only countries with more than 100 SARS-CoV-2 genomes
296	are shown.
297	
298	Figure 4. Number of SARS-CoV-2 genomes per 100 SARS-CoV-2-associated deaths vs.
299	gross domestic product per capita.
300	For a better legibility of the graph only countries with more than 100 SARS-CoV-2 genomes
301	are shown.
302	

TABLE

Table 1. Number of genomes, of SARS-CoV-2-diagnosed cases, and of SARS-CoV-2-associated deaths per country, and various

306 epidemiological data among which population size, life expectancy, gross domestic product (GDP) per capita, or human development index

Country	Continent/region	Number of genomes	Number of genomes per 100 cases	Number of genomes per 100 deaths	Number of cases	Number of deaths	Population	GDP per capita	Number of hospital beds per thousand	Life expectancy (years)	Human development index
Iceland	Europe	4 175	69,6	14397	6 001	29	341 250	46 483	2,9	83,0	0,935
Singapore	Asia	1 731	2,9	5969	59 425	29	5 850 343	85 535	2,4	83,6	0,932
New Zealand	Oceania	1 095	47,5	4380	2 305	25	4 822 233	36 086	2,6	82,3	0,917
Taiwan	Asia	150	16,8	2143	895	7	23 816 775	-	-	80,5	-
Australia	Oceania	17 290	60,0	1902	28 799	909	25 499 881	44 649	3,8	83,4	0,939
Denmark	Europe	34 819	17,6	1680	197 892	2 072	5 792 203	46 683	2,5	80,9	0,929
Thailand	Asia	496	3,1	653	16 221	76	69 799 978	16 278	2,1	77,2	0,755
Vietnam	Asia	142	8,6	406	1 651	35	97 338 583	6 172	2,6	75,4	0,694
Luxembourg	Europe	2 325	4,6	405	50 228	574	625 976	94 278	4,5	82,3	0,904
Mongolia	Asia	7	0,4	350	1 710	2	3 278 292	11 841	7,0	69,9	0,741
Gambia	Africa	427	10,6	334	4 019	128	2 416 664	1 562	1,1	62,1	0,460
Japan	Asia	17 052	4,5	310	380 644	5 503	126 476 458	39 002	13,1	84,6	0,909
IHU Méditerranée Infection	Europe	1 585	5,2	250	30 237	633	-	-	-	-	-
Norway	Europe	1 278	2,1	229	62 276	557	5 421 242	64 800	3,6	82,4	0,953
United Arab Emirates	Asia	1 845	0,6	225	293 052	819	9 890 400	67 293	1,2	78,0	0,863
United Kingdom	Europe	192 556	5,1	186	3 754 448	103 324	67 886 004	39 753	2,5	81,3	0,922
Finland	Europe	1 154	2,6	174	44 039	664	5 540 718	40 586	3,3	81,9	0,920
Brunei	Asia	5	2,8	167	180	3	437 483	71 809	2,7	75,9	0,853
Papua New Guinea	Oceania	13	1,5	144	851	9	8 947 027	3 823	-	64,5	0,544

Country	Continent/region	Number	Number	Number	Number of	Number	Population	GDP per	Number	Life	Human
		of	of	of	cases	of		capita	of	expectancy	development
		genomes	genomes	genomes		deaths			hospital	(years)	index
			cases	deaths					thousand		
South Korea	Asia	1 631	2,1	117	77 395	1 399	51 269 183	35 938	12,3	83,0	0,903
Equatorial Guinea	Africa	95	1,7	110	5 492	86	1 402 985	22 605	2,1	58,7	0,591
Switzerland	Europe	8 071	1,6	87	519 404	9 308	8 654 618	57 410	4,5	83,8	0,944
Burkina Faso	Africa	85	0,8	71	10 377	120	20 903 278	1 703	0,4	61,6	0,423
Ireland	Europe	1 973	1,0	62	193 645	3 167	4 937 796	67 335	3,0	82,3	0,938
Democratic Republic of Congo	Africa	360	1,6	54	22 322	665	89 561 404	808	-	60,7	0,457
Netherlands	Europe	7 422	0,8	53	979 702	13 925	17 134 873	48 473	3,3	82,3	0,931
Saint Vincent and the Grenadines	North America	1	0,1	50	827	2	110 947	10 727	2,6	72,5	0,723
Surinam	South America	71	0,9	46	8 293	154	586 634	13 767	3,1	71,7	0,720
Malaysia	Asia	321	0,2	45	198 208	717	32 365 998	26 808	1,9	76,2	0,802
Canada	North America	8 613	1,1	44	770 433	19 659	37 742 157	44 018	2,5	82,4	0,926
Côte d'Ivoire	Africa	65	0,2	43	27 694	151	26 378 275	3 601	-	57,8	0,492
Uganda	Africa	133	0,3	42	39 424	318	45 741 000	1 698	0,5	63,4	0,516
Bahrain	Asia	150	0,1	40	101 503	372	1 701 583	43 291	2,0	77,3	0,846
Uruguay	South America	129	0,3	31	39 887	415	3 473 727	20 551	2,8	77,9	0,804
Kenya	Africa	514	0,5	29	100 422	1 753	53 771 300	2 993	1,4	66,7	0,590
Ghana	Africa	114	0,2	29	63 883	390	31 072 945	4 228	0,9	64,1	0,592
Mozambique	Africa	94	0,3	27	35 833	347	31 255 435	1 136	0,7	60,9	0,437
Benin	Africa	12	0,3	25	3 786	48	12 123 198	2 064	0,5	61,8	0,515
Israel	Asia	1 128	0,2	24	628 895	4 669	8 655 541	33 132	3,0	83,0	0,903
Senegal	Africa	136	0,5	22	25 711	614	16 743 930	2 471	-	67,9	0,505
Portugal	Europe	2 422	0,4	21	685 383	11 608	10 196 707	27 937	3,4	82,1	0,847
USA	North America	89 814	0,3	21	25 766 681	433 196	331 002 647	54 225	2,8	78,9	0,924
Latvia	Europe	233	0,4	20	63 992	1 148	1 886 202	25 064	5,6	75,3	0,847
Sri Lanka	Asia	60	0,1	20	61 586	297	21 413 250	11 669	3,6	77,0	0,770
China	Asia	949	1,0	20	99 746	4 813	1 439 323 774	15 309	4,3	76,9	0,752
Nigeria	Africa	290	0,2	19	127 024	1 547	206 139 587	5 338	-	54,7	0,532
Rwanda	Africa	34	0,2	18	14 529	186	12 952 209	1 854	-	69,0	0,524
Belgium	Europe	3 743	0,5	18	702 437	20 982	11 589 616	42 659	5,6	81,6	0,916

Country	Continent/region	Number	Number	Number	Number of	Number	Population	GDP per	Number	Life	Human
		of	of	of	cases	of		capita	of	expectancy	development
		genomes	genomes	genomes		deaths			hospital	(years)	index
			cases	deaths					thousand		
Austria	Europe	1 344	0,3	18	410 230	7 607	9 006 400	45 437	7,4	81,5	0,908
Antigua and Barbuda	North America	1	0,5	17	215	6	97 928	21 491	3,8	77,0	0,780
Saudi Arabia	Asia	953	0,3	15	367 276	6 366	34 813 867	49 045	2,7	75,1	0,853
Sierra Leone	Africa	11	0,3	14	3 282	77	7 976 985	1 390	-	54,7	0,419
Jordan	Asia	581	0,2	14	324 169	4 269	10 203 140	8 337	1,4	74,5	0,735
Oman	Asia	205	0,2	13	133 728	1 527	5 106 622	37 961	1,6	77,9	0,821
Spain	Europe	7 431	0,3	13	2 705 001	57 806	46 754 783	34 272	3,0	83,6	0,891
Trinidad and Tobago	North America	17	0,2	13	7 520	134	1 399 491	28 763	3,0	73,5	0,784
Sweden	Europe	1 388	0,2	12	564 557	11 520	10 099 270	46 949	2,2	82,8	0,933
Bangladesh	Asia	792	0,1	9,8	533 953	8 087	164 689 383	3 524	0,8	72,6	0,608
Botswana	Africa	13	0,1	9,7	21 293	134	2 351 625	15 807	1,8	69,6	0,717
Lithuania	Europe	258	0,1	9,4	180 160	2 749	2 722 291	29 524	6,6	75,9	0,858
Zimbabwe	Africa	101	0,3	8,7	32 646	1 160	14 862 927	1 900	1,7	61,5	0,535
Germany	Europe	4 582	0,2	8,2	2 194 562	55 883	83 783 945	45 229	8,0	81,3	0,936
Mali	Africa	24	0,3	7,3	8 056	328	20 250 834	2 014	0,1	59,3	0,427
Guinea	Africa	6	0,0	7,3	14 435	82	13 132 792	1 999	0,3	61,6	0,459
South Africa	Africa	3 062	0,2	7,1	1 437 798	43 105	59 308 690	12 295	2,3	64,1	0,699
Costa Rica	North America	181	0,1	7,0	192 637	2 599	5 094 114	15 525	1,1	80,3	0,794
Qatar	Asia	16	0,0	6,5	150 280	248	2 881 060	116 936	1,2	80,2	0,856
Panama	North America	314	0,1	6,0	316 808	5 196	4 314 768	22 267	2,3	78,5	0,789
Gabon	Africa	4	0,0	5,9	10 536	68	2 225 728	16 562	6,3	66,5	0,702
France	Europe	4 379	0,1	5,9	3 166 145	74 601	65 273 512	38 606	6,0	82,7	0,901
Liechtenstein	Europe	3	0,1	5,8	2 475	52	38 137	-	2,4	82,5	0,916
Chile	South America	966	0,1	5,3	714 143	18 174	19 116 209	22 767	2,1	80,2	0,843
Malta	Europe	13	0,1	5,0	17 400	261	441 539	36 513	4,5	82,5	0,878
Estonia	Europe	20	0,0	4,9	42 656	406	1 326 539	29 481	4,7	78,7	0,871
Palestine	Asia	88	0,1	4,9	157 593	1 812	5 101 416	4 4 50	-	74,1	0,686
Cameroon	Africa	22	0,1	4,8	29 617	462	26 545 864	3 365	1,3	59,3	0,556
Slovenia	Europe	162	0,1	4,7	163 235	3 448	2 078 932	31 401	4,5	81,3	0,896
Cyprus	Europe	8	0,0	4,1	30 538	197	875 899	32 415	3,4	81,0	0,869
Egypt	Africa	366	0,2	4,0	164 282	9 169	102 334 403	10 550	1,6	72,0	0,696
=					1						

Country	Continent/region	Number	Number	Number	Number of	Number	Population	GDP per	Number	Life	Human
		01 genomes	0I genomes	01 genomes	cases	01 deaths		capita	01 hospital	expectancy (vears)	development
		genomes	per 100	per 100		uuuu			beds per	() •••••)	
			cases	deaths					thousand		
Czech Republic	Europe	614	0,1	3,9	964 660	15 944	10 708 982	32 606	6,6	79,4	0,888
Jamaica	North America	13	0,1	3,8	15 435	344	2 961 161	8 194	1,7	74,5	0,732
France minus IHU Méditerranée Infection	Europe	2 794	0,1	3,8	3 135 908	73 968	-	-	-	-	-
Serbia	Europe	146	0,0	3,7	390 637	3 965	6 804 596	14 049	5,6	76,0	0,787
Italy	Europe	2 974	0,1	3,4	2 515 507	87 381	60 461 828	35 220	3,2	83,5	0,880
India	Asia	4 778	0,0	3,1	10 720 048	154 010	1 380 004 385	6 427	0,5	69,7	0,640
North Macedonia	Europe	82	0,1	2,9	91 891	2 831	2 083 380	13 111	4,3	75,8	0,757
Slovakia	Europe	122	0,1	2,8	243 427	4 411	5 459 643	30 155	5,8	77,5	0,855
Russia	Europe	1 820	0,0	2,6	3 752 548	70 533	145 934 460	24 766	8,1	72,6	0,816
Greece	Europe	141	0,1	2,5	154 796	5 742	10 423 056	24 574	4,2	82,2	0,870
Kuwait	Asia	23	0,0	2,4	163 450	958	4 270 563	65 531	2,0	75,5	0,803
Hungary	Europe	278	0,1	2,3	363 450	12 291	9 660 350	26 778	7,0	76,9	0,838
Madagascar	Africa	6	0,0	2,2	18 743	279	27 691 019	1 416	0,2	67,0	0,519
Belarus	Europe	35	0,0	2,1	242 851	1 688	9 449 321	17 168	11,0	74,8	0,808
Turkey	Asia	493	0,0	1,9	2 457 118	25 605	84 339 067	25 129	2,8	77,7	0,791
Kazakhstan	Asia	53	0,0	1,7	231 716	3 040	18 776 707	24 056	6,7	73,6	0,800
Montenegro	Europe	12	0,0	1,5	60 288	790	628 062	16 409	3,9	76,9	0,814
Morocco	Africa	122	0,0	1,5	469 139	8 224	36 910 558	7 485	1,1	76,7	0,667
Ecuador	South America	208	0,1	1,4	246 000	14 766	17 643 060	10 582	1,5	77,0	0,752
Argentina	South America	662	0,0	1,4	1 905 524	47 601	45 195 777	18 934	5,0	76,7	0,825
Belize	North America	4	0,0	1,3	11 845	298	397 621	7 824	1,3	74,6	0,708
Myanmar	Asia	41	0,0	1,3	139 152	3 103	54 409 794	5 592	0,9	67,1	0,578
Poland	Europe	473	0,0	1,3	1 496 665	36 443	37 846 605	27 216	6,6	78,7	0,865
Tunisia	Africa	78	0,0	1,2	204 351	6 508	11 818 618	10 849	2,3	76,7	0,735
Peru	South America	441	0,0	1,1	1 113 970	40 272	32 971 846	12 237	1,6	76,7	0,750
Brazil	South America	2 414	0,0	1,1	9 058 687	221 547	212 559 409	14 103	2,2	75,9	0,759
Indonesia	Asia	313	0,0	1,1	1 037 993	29 331	273 523 621	11 189	1,0	71,7	0,694
Romania	Europe	191	0,0	1,1	721 513	18 105	19 237 682	23 313	6,9	76,1	0,811
Croatia	Europe	50	0,0	1,0	230 978	4 943	4 105 268	22 670	5,5	78,5	0,831
Andorra	Europe	1	0,0	1,0	9 779	100	77 265	-	-	83,7	0,858

Country	Continent/region	Number of	Number of	Number of	Number of cases	Number of	Population	GDP per capita	Number of	Life expectancy	Human development
		genomes	genomes per 100 cases	genomes per 100 deaths		deaths			hospital beds per thousand	(years)	index
Cuba	North America	2	0,0	1,0	24 105	208	11 326 616	-	5,2	78,8	0,777
Lebanon	Asia	23	0,0	0,9	293 157	2 621	6 825 442	13 368	2,9	78,9	0,757
Georgia	Asia	26	0,0	0,8	256 287	3 127	3 989 175	9 745	2,6	73,8	0,780
Kosovo	Europe	12	0,0	0,8	58 988	1 479	1 932 774	9 796	-	-	-
Nepal	Asia	15	0,0	0,7	270 588	2 0 2 0	29 136 808	2 443	0,3	70,8	0,574
Bosnia and Herzegovina	Europe	33	0,0	0,7	121 194	4 659	3 280 815	11 714	3,5	77,4	0,768
Algeria	Africa	18	0,0	0,6	106 610	2 881	43 851 043	13 914	1,9	76,9	0,754
Guatemala	North America	32	0,0	0,6	157 595	5 543	17 915 567	7 424	0,6	74,3	0,650
Colombia	South America	290	0,0	0,5	2 067 575	52 913	50 882 884	13 255	1,7	77,3	0,747
Pakistan	Asia	58	0,0	0,5	541 031	11 560	220 892 331	5 035	0,6	67,3	0,562
Mexico	North America	598	0,0	0,4	1 825 519	155 145	128 932 753	17 336	1,4	75,1	0,774
El Salvador	North America	6	0,0	0,4	53 989	1 599	6 486 201	7 292	1,3	73,3	0,674
Philippines	Asia	38	0,0	0,4	519 575	10 552	109 581 085	7 599	1,0	71,2	0,699
Dominican Republic	North America	8	0,0	0,3	208 610	2 603	10 847 904	14 601	1,6	74,1	0,736
Ukraine	Europe	67	0,0	0,3	1 247 674	23 469	43 733 759	7 894	8,8	72,1	0,751
Zambia	Africa	2	0,0	0,3	50 319	705	18 383 956	3 689	2,0	63,9	0,588
Bolivia	South America	27	0,0	0,3	210 726	10 226	11 673 029	6 886	1,1	71,5	0,693
Moldova	Europe	9	0,0	0,3	158 309	3 413	4 033 963	5 190	5,8	71,9	0,700
Azerbaijan	Asia	8	0,0	0,3	229 793	3 113	10 139 175	15 847	4,7	73,0	0,757
Venezuela	South America	3	0,0	0,3	125 364	1 171	28 435 943	16 745	0,8	72,1	0,761
Iraq	Asia	31	0,0	0,2	617 202	13 024	40 222 503	15 664	1,4	70,6	0,685
Bulgaria	Europe	15	0,0	0,2	217 574	8 973	6 948 445	18 563	7,5	75,1	0,813
Armenia	Asia	3	0,0	0,1	166 669	3 067	2 963 234	8 788	4,2	75,1	0,755
Albania	Europe	1	0,0	0,1	75 454	1 350	2 877 800	11 803	2,9	78,6	0,785
Iran	Asia	36	0,0	0,1	1 398 841	57 736	83 992 953	19 083	1,5	76,7	0,798
Saint Kitts and Nevis	North America	3	8,1	0,0	37	-	53 192	24 654	2,3	76,2	0,778
Cambodia	Asia	4	0,9	0,0	463	-	16 718 971	3 645	0,8	69,8	0,582
Hong Kong	Asia	344	0,0	0,0	-	-	7 496 988	56 055	-	84,9	0,933

Number of genomes per 100 deaths

Human development index

Fig. 3

