1	SARS-CoV2 persistent viral shedding in the context of hydroxychloroquine-
2	azithromycin treatment
3	
4	Michel Drancourt ^{1,2*} , Sébastien Cortaredona ³ , Cléa Melenotte ¹ , Sophie Amrane ¹ ,
5	Carole Eldin ² , Bernard La Scola ^{1,2} , Philippe Parola ^{2,3} , Matthieu Million ¹ , Jean-
6	Christophe Lagier ^{1,2} , Didier Raoult ^{1,2} , Philippe Colson ^{1,2}
7	
8	¹ Aix Marseille Univ., IRD, MEPHI, IHU-Méditerranée Infection, Marseille, France.
9	² IHU Méditerranée Infection, Marseille, France.
10	³ Aix Marseille Univ., IRD, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France.
11	
12	* Correspondence: Prof. Michel DRANCOURT michel.drancourt@univ-amu.fr
13	
14	IHU - Méditerranée Infection
15	19-21 Boulevard Jean Moulin
16	13005 Marseille
17	Phone number: +33 4 13 73 24 01
18	Fax number: +33 4 13 73 24 02
19	
20	

21 Abstract:

22 SARS-CoV-2 nasopharyngeal shedding contributes to the spread of the COVID 23 epidemic. Among 3,271 COVID-19 patients treated at the Hospital University Institute 24 Méditerranée Infection, Marseille, France from March 3 to April 27, 2020, tested at 25 least twice by RT-PCR, the median SARS-CoV-2 nasopharyngeal shedding was 6 26 days (range 2-54 days). Compared with short shedders (gRT-PCR positivity < 10 27 days), 34 (1.04%) persistent shedders (gRT-PCR positivity \geq 17 days; mean \pm SD: 28 23.3 ± 3.8 days) were significantly older, with associated comorbidities, exhibiting 29 lymphopenia, eosinopenia, increased D-dimer and increased troponin (p<0.05), and 30 were hospitalized in intensive care unit in 17.7% vs. 1.1% cases (p<0.0001). Viral 31 culture was positive in 6 persistent shedders after day 10, including one patient after 32 day 17, and no viral co-pathogen was detected in 33 tested patients. Persistent 33 shedders received azithromycin plus hydroxychloroquine \geq 3 days in 26/34 (76.5%) 34 patients, a figure significantly lower than in short shedders (86.6%) (p=0.042). 35 Accordingly, mortality was 14.7% vs. 0.5% (p<0.0001). Persistent shedding was 36 significantly associated with persistent dyspnea and anosmia/ageusia (p<0.05). In 37 the context of COVID-19 treatment, including treatment with azithromycin plus 38 hydroxychloroquine, the persistence of SARS-CoV-2 nasopharyngeal shedding was 39 a rare event, most frequently encountered in elderly patients with comorbidities and 40 lacking azithromycin plus hydroxychloroquine treatment.

41

42 **Keywords:** SARS-CoV-2; COVID-19; viral persistence; culture; RT-PCR;

43 hydroxychloroquine; azithromycin.

1. Introduction

45	SARS-C	oV-2 responsible for COVID-19, is detected in the nasopharynx, which could
46	constitute	e a major portal of entry for this emerging pathogen [1]. Indeed, not only is
47	SARS-C	oV-2 RNA routinely detected in nasopharyngeal swabs of COVID-19
48	patients	[2], but this clinical material yields living virus after it is appropriately
49	cultivated	d in cell culture systems [3, 4]. These data suggest that SARS-CoV-2
50	nasopha	ryngeal shedding is of interest for the natural history of COVID-19 in patients
51	and in po	opulations, as it may relate to the prognosis of the infection and its
52	contagio	usness. Two meta-analyses, including respectively 79 and 28 studies,
53	converge	ed to indicate a viral shedding duration of 17 days (mean) and 18.4 days
54	(median)	, respectively [5, 6].
55	M	onitoring more than 3,200 COVID-19 patients firmly documented by RT-PCR
56	at the Ho	ospital University Institute Méditerranée Infection, Marseille, France in March-
57	April 202	0 provided the opportunity to clarify the clinical and virological
58	characte	ristics of patients with persistent nasopharyngeal shedding of SARS-CoV-2
59	[2].	
60		
61	2. M	aterials and Methods
62	2.1.	Patients. This retrospective study aimed to describe the duration of SARS-
63		CoV-2 viral shedding among 3,737 real-time RT-PCR (qRT-PCR)-
64		confirmed COVID-19 patients followed from March 3 to April 27, 2020 in
65		the Méditerranée Infection Institute, as previously reported [2]. Clinical,
66		radiological and laboratory data were collected, as previously reported [2,
67		7] and the severity of patient illness was evaluated using the National Early
68		Warning Score version 2 (NEWS-2) and the Charlson score [8]. All patients

69without contraindications were offered oral hydroxychloroquine (HCQ) (20070mg, three times a day for ten days) and azithromycin (AZ) (500 mg at day711, followed by 250 mg per day for 4 days), and ceftriaxone or ertapenem72was added for seven days in case of NEWS-2 \geq 5 [9, 10]. Initiation of73medical care (i.e., medical consultation and initiation of treatment) was74defined as day 0, outpatient reevaluation was offered at day 2, 6 and 1075(more if needed), while hospitalized patients were evaluated twice daily.

76

77 2.2. Virology. All patients were SARS-CoV-2-diagnosed based on at least one positive RT-PCR test performed by nasopharyngeal swab. SARS-CoV-2 78 79 genome sequencing was performed directly from nasopharyngeal swab 80 RNA extract using the Illumina MiSeg sequencer and Nextera XT paired-81 end technology (Illumina, Evry, France) and genome sequences were 82 compared with the reference SARS-CoV-2 isolate Wuhan Hu-1, genome 83 sequence (NC 045512.2) [11]. In case of qRT-PCR cycle threshold (Ct) 84 value > 18, partial spike gene PCR amplification (nucleotides 21,296-85 23,424 in reference to NC 045512.2) was performed, as previously described [DOI:https://doi.org/10.35088/4y1e-ec62]. Viral cultures were 86 87 performed as previously described [3, 4]. Patients for whom the gRT-PCRs 88 became negative within 10 days were qualified as short viral shedders, 89 patients with positive qRT-PCRs between day 10 and 17 as long viral 90 shedders and patients with positive qRT-PCRs after day 17 as persistent 91 viral shedders.

92

93 2.3. Co-pathogen detection. Co-pathogens in the nasopharyngeal swabs
 94 were screened by using a multiplex test incorporating 21 targeted
 95 pathogens, following the instructions of the supplier (FTD Respiratory
 96 pathogens 21; Siemens Fast Track Diagnosis, Luxembourg).

97

98 2.4. Statistical analysis. We used the Student t-test, Mann-Whitney U test, 99 Chi2 test, or Fisher's exact test to compare differences between short viral 100 shedding and persistent viral shedding groups. To explore risk factors 101 associated with persistent viral shedding, we performed multivariable 102 analyses using logistic regression models. All variables significant at 103 p<0.10 in univariate analyses were introduced in the initial multivariate 104 model. A stepwise approach was then used to assess the iteration of 105 variables and to control potential confounders (both significance level 106 values for entry and stay were set at 0.05). A primary model was 107 performed over the full sample and a secondary model was performed 108 among patients aged 65 years and older [12]. A secondary analysis using 109 a multivariable logistic regression model was also performed to identify risk 110 factors associated with prolonged COVID-19 symptoms. The same 111 stepwise approach was applied to this secondary outcome. A two-sided a 112 of less than 0.05 was considered statistically significant. All analyses were 113 carried out using SAS 9.4 statistical software (SAS Institute, Cary, NC).

114

115**2.5.** Ethics statement. Data were collected retrospectively from the routine116care setting. This non-interventional retrospective study was approved by117our institutional review board committee (Méditerranée Infection No.:

118		2020–021). In compliance with European General Data Protection
119		Regulation No. 2016/679, patients were informed of the potential use of
120		their medical data and that they could refuse the use of their data. The
121		analysis of collected data followed the reference methodology MR-004
122		registered on No. MR 5010010520 in the AP-HM register, in compliance
123		with European General Data Protection
124		
125	3. R	esults
126	3.1.	Population description. Among 3,737 COVID-19 patients followed at the
127		Hospital University Institute Méditerranée Infection between March 3 and
128		April 27 [2], 3,271 patients had at least 2 positive SARS-CoV-2 RT-PCRs
129		performed within less than 10 days, had a median duration of shedding of
130		6 days (range, 2-54 days): in detail, 2,800 (85.6%) patients were short
131		shedders, with a 4.8 \pm 3.1-day (mean \pm SD) shedding; 437 (13.3%)
132		patients were long shedders, with a 15.2 \pm 3.8-day shedding; and 34
133		(1.04%) patients were persistent shedders, with a 23.3 \pm 3.8-day shedding
134		(Table 1). Compared to short shedders, persistent shedders were
135		significantly (p < 0.01) older (\geq 65 years old), although the age range was
136		21-93 years, and 13/34 patients were < 45 years old, with age-related
137		comorbidities including chronic heart disease, hypertension, and a NEWS-
138		$2 \ge 5$, and a Charlson score ≥ 5 , indicative of an 85% probability of death in
139		13/34 (38.2%) patients and subsequent hospitalization (Table 1).
140		Furthermore, the initial laboratory check-up of persistent shedders
141		indicated a higher neutrophil/lymphocyte ratio, eosinopenia and higher D-
142		dimer, troponin and C-reactive protein levels compared to short shedders

(Table 2). Multivariate logistic regression indicated that persistent viral 144 shedding was associated with hospitalization, chronic heart disease and 145 eosinopenia <0.04 G/L.

146

147 3.2. *Care and treatment*. A higher percentage of persistent shedders was 148 hospitalized in intensive care unit compared to short shedders, 17s.7% vs. 149 1.1% (p < 0.0001). In this cohort, 26/34 (76.5%) persistent shedders had 150 HCQ-AZ therapy \geq 3 days versus 2,426/2,800 (86.6%) short shedders 151 (p=0.042, Mantel-Haenszel Chi-2 test). Indeed, 8/34 persistent shedders 152 had HCQ-AZ therapy < 3 days: more precisely, one patient refused HCQ 153 and AZ treatment, and seven other patients received AZ only because 154 HCQ was contraindicated due to cardiac contraindications (n=6) and drug 155 interaction (n=1) (Table 1). Persistent viral shedding was also associated 156 with persistent dyspnea 30 days after the onset of follow up. Mortality was 157 14.7% among persistent shedders vs. 0.5% among short shedders 158 (p<0.0001). At ~ 9-10-month follow-up in January 2021, 5/34 persistent 159 shedders had died and 7 had been seen in consultation: three patients had 160 persistent post-COVID-19 dyspnea, including one patient who had 161 persistent ageusia. Kinetics analysis showed that eosinophil and 162 lymphocyte counts were significantly lower in patients with persistent viral 163 shedding than in those with short viral shedding, whereas neutrophils were 164 higher in persistent viral shedders. D-dimers and troponin were 165 significantly and persistently higher in persistent viral shedders.

167 3.3. *Viral genotype analysis.* A total of 21 complete (n=11) or partial 168 (approximately the first half of the spike-encoding gene, n=10) genome 169 sequences were obtained for the 34 persistent shedders, comprising 14 170 classified in Nextstrain clade 20A, 3 in clade 20B and 4 in clade 20C [13]. 171 This distribution into viral clades did not differ from that observed in non-172 persistent viral shedders during the same period (310 in clade 20A, 55 in 173 clade 20B and 94 in clade 20C, for a total of 466 genome sequences). All 174 spike sequences harbored the D614G substitution that was present in 175 almost all SARS-CoV-2 genomes in Europe since the epidemic onset. No 176 additional mutations were present within the spike.

177

3.4. Viral culture. A total of 177 nasopharyngeal swabs were cultured in the 34
patients, of which 69 swabs collected in 20 patients were positive in culture.
More precisely, eight swabs collected in six patients had a positive culture
> 10 days after the onset of follow-up, at day 11, 13, 14, 15, 17 and 33
(Figure 1).

- 183
- 184 **4.** Discussion

185 In a large series of RT-PCR-documented COVID-19 cases followed at the 186 Méditerranée Infection Institute in March and April 2020, the median SARS-CoV-2 187 nasopharyngeal shedding was six days, shorter than that reported in the literature 188 [14]. Also, less than 1% of cases (34/3,737) exhibited shedding \geq 17 days, and 189 persistent positivity of qRT-PCR in nasopharyngeal swabs correlated with culture 190 positivity. We observed positive cultures more than 10 days after the onset of the 191 follow-up in 8 of 34 patients, a situation rarely reported, as nasopharyngeal shedding 192 is usually reported on the sole basis of qRT-PCR positivity [6]: one case of 4-month

viral shedding was reported in the absence of culture and contagiousness [15],
whereas anecdotal persistent viral shedding with up to 60-days positive culture has
been reported in cancer patients receiving chemotherapy [16].

196 Previous case reports and a small series of patients experienced prolonged 197 shedding with SARS-CoV-2 (Table 3)[17-35], mostly involving immunocompromised 198 individuals, including patients diagnosed with hematological malignancies in most 199 cases. This was not our situation, where only one patient had lymphoma and another 200 immunosuppression following kidney transplantation. In addition, several cases of 201 viral shedding beyond 90 days occurred in patients who received treatments with 202 convalescent plasma and/or remdesivir [17, 18]. These situations were not 203 encountered in this series, as no patient received remdesivir or convalescent plasma 204 and the figures reported here were observed in the context of standardized care, 205 including the prescription of hydroxychloroquine and azithromycin treatment. It is 206 noteworthy that almost one quarter of the 34 persistent shedders reported here did 207 not receive the combination of hydroxychloroquine and azithromycin, a prevalence 208 significantly higher than that in short shedders. This standardized care notably 209 differed in other series reporting a higher proportion of persistent shedders, and this 210 observation suggests that the combination of hydroxychloroquine plus azithromycin 211 at the dosage prescribed may participate in reducing the time of SARS-CoV-2 212 nasopharyngeal shedding.

This reported series mirrors the first COVID-19 epidemic in our region, which was caused by SARS-CoV-2 of clades 20A, 20B and 20C. Accordingly, population next-generation sequencing, we did not observe any genotype pattern in any of the 216 21 patients whose viral genome could be explored. Further ultradeep sequencing of paired early and late nasopharyngeal swabs in the 34 patients here reported may

- 218 nevertheless reveal quasi-species and minority genotypes that may have escaped
- the standard genotyping methods used in this report.
- 220 Whether the data here reported on the genetic context of SARS-CoV-2
- circulating in our region one year ago would apply to that of SARS-CoV-2 variants
- responsible for current epidemics [36] remains to be explored.
- 223

224 References

226	1.	Zhu N, Zhang D, Wang W, et al. A Novel Coronavirus from Patients with
227		Pneumonia in China, 2019. N Engl J Med 2020 ; 382:727–733.
228	2.	Lagier J-C, Million M, Gautret P, et al. Outcomes of 3,737 COVID-19 patients
229		treated with hydroxychloroquine/azithromycin and other regimens in Marseille,
230		France: A retrospective analysis. Travel Med Infect Dis 2020; :101791.
231	3.	La Scola B, Le Bideau M, Andreani J, Hoang VT, Grimaldier C, Colson P,
232		Gautret P, Raoult D. Viral RNA load as determined by cell culture as a
233		management tool for discharge of SARS-CoV-2 patients from infectious disease
234		wards. Eur J Clin Microbiol Infect Dis. 2020;39:1059-1061. doi:
235		10.1007/s10096-020-03913-9. Epub 2020 Apr 27. PMID: 32342252; PMCID:
236		PMC7185831.
237	4.	Jaafar R, Aherfi S, Wurtz N, Grimaldier C, Hoang VT, Colson P, Raoult D, La
238		Scola B. Correlation between 3790 qPCR positives samples and positive cell
239		cultures including 1941 SARS-CoV-2 isolates. Clin Infect Dis. 2020:ciaa1491.
240		doi: 10.1093/cid/ciaa1491. Epub ahead of print. PMID: 32986798; PMCID:
241		PMC7543373.
242	5.	Fontana LM, Villamagna AH, Sikka MK, McGregor JC. Understanding viral
243		shedding of severe acute respiratory coronavirus virus 2 (SARS-CoV-2):
244		Review of current literature. Infect Control Hosp Epidemiol 2020; :1–10.
245	6.	Cevik M, Tate M, Lloyd O, Maraolo AE, Schafers J, Ho A. SARS-CoV-2, SARS-
246		CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and
247		infectiousness: a systematic review and meta-analysis. Lancet Microbe 2021;
248		2:e13–e22.

- Amrane S, Tissot-Dupont H, Doudier B, et al. Rapid viral diagnosis and
 ambulatory management of suspected COVID-19 cases presenting at the
 infectious diseases referral hospital in Marseille, France, January 31st to
 March 1st, 2020: A respiratory virus snapshot. Travel Med Infect Dis
 2020; :101632.
- 8. Myrstad M, Ihle-Hansen H, Tveita AA, et al. National Early Warning Score 2
- 255 (NEWS2) on admission predicts severe disease and in-hospital mortality from

256 Covid-19 – a prospective cohort study. Scandinavian Journal of Trauma,

257 Resuscitation and Emergency Medicine **2020**; 28:66.

- 9. Gautret P, Lagier J-C, Parola P, et al. Hydroxychloroquine and azithromycin as a
 treatment of COVID-19: results of an open-label non-randomized clinical trial.
 Int J Antimicrob Agents **2020**; :105949.
- 10. Million M, Lagier JC, Gautret P, Colson P, Fournier PE, Amrane S, Hocquart M,

262 Mailhe M, Esteves-Vieira V, Doudier B, Aubry C, Correard F, Giraud-Gatineau

- A, Roussel Y, Berenger C, Cassir N, Seng P, Zandotti C, Dhiver C, Ravaux I,
- 264 Tomei C, Eldin C, Tissot-Dupont H, Honoré S, Stein A, Jacquier A, Deharo JC,
- 265 Chabrière E, Levasseur A, Fenollar F, Rolain JM, Obadia Y, Brouqui P,
- 266 Drancourt M, La Scola B, Parola P, Raoult D. Early treatment of COVID-19
- 267 patients with hydroxychloroquine and azithromycin: A retrospective analysis of
- 268 1061 cases in Marseille, France. Travel Med Infect Dis. **2020**;35:101738. doi:
- 269 10.1016/j.tmaid.2020.101738. Epub 2020 May 5. PMID: 32387409; PMCID:
- 270 PMC7199729.
- 11. Levasseur, A., Delerce, J., Caputo, A., Brechard, L., Colson, P., Lagier, J.-C.,
- 272 Fournier, P.-E., Raoult, D. Genomic diversity and evolution of coronavirus
- 273 (SARS-CoV-2) in France from 309 COVID-19-infected patients. bioRxiv **2020**;

39:1059–1061.

275 12. Zheng Z, Peng F, Xu B, et al. Risk factors of critical & mortal COVID-19
276 cases: A systematic literature review and meta-analysis. J Infect **2020**; 81:e16–

277 e25.

- 13. Colson P, Levasseur A, Gautret P, Fenollar F, Thuan Hoang V, Delerce J, Bitam I,
- 279 Saile R, Maaloum M, Padane A, Bedotto M, Brechard L, Bossi V, Ben Khedher
- 280 M, Chaudet H, Million M, Tissot-Dupont H, Lagier JC, Mboup S, Fournier PE,
- 281 Raoult D. Introduction into the Marseille geographical area of a mild SARS-
- 282 CoV-2 variant originating from sub-Saharan Africa: An investigational study.
- 283 Travel Med Infect Dis. **2021**;40:101980. doi: 10.1016/j.tmaid.2021.101980.
- Epub ahead of print. PMID: 33535105; PMCID: PMC7847701.
- 285 14. Widders A, Broom A, Broom J. SARS-CoV-2: The viral shedding vs infectivity
 286 dilemma. Infect Dis Health **2020**; 25:210–215.
- 287 15. Chen X, Zhu B, Hong W, et al. Associations of clinical characteristics and
- treatment regimens with the duration of viral RNA shedding in patients with
- 289 COVID-19. Int J Infect Dis **2020**; 98:252–260.
- 290 16. Aydillo T, Gonzalez-Reiche AS, Aslam S, et al. Shedding of Viable SARS-CoV-
- 2 after Immunosuppressive Therapy for Cancer. N Engl J Med **2020**; 383:2586–
 2588.
- 293 17. Choi B, Choudhary MC, Regan J, Sparks JA, Padera RF, Qiu X et al. Persistence
 294 and Evolution of SARS-CoV-2 in an Immunocompromised Host. N Engl J Med
 295 2020;383:2291-3.
- 18. Kemp SA, Collier DA, Datir R, Ferreira I, Gayed S, Jahun A et al. Neutralising
- antibodies in Spike mediated SARS-CoV-2 adaptation. medRxiv 2020
- 298 December 29.

299	19. Baang JH, Smith C, Mirabelli C, Valesano AL, Manthei DM, Bachman MA et al.
300	Prolonged Severe Acute Respiratory Syndrome Coronavirus 2 Replication in an
301	Immunocompromised Patient, J Infect Dis 2021 :223:23-7.

- 302 20. Hensley MK, Bain WG, Jacobs J, Nambulli S, Parikh U, Cillo A, Staines B, Heaps
- 303 A, Sobolewski MD, Rennick LJ, Macatangay BJC, Klamar-Blain C, Kitsios GD,
- 304 Methé B, Somasundaram A, Bruno T, Cardello C, Shan F, Workman C, Ray P,
- Ray A, Lee J, Sethi R, Schwarzmann WE, Ladinsky MS, Bjorkman PJ, Vignali
- 306 DA, Duprex WP, Agha ME, Mellors JW, McCormick KD, Morris A, Haidar G.
- 307 Intractable COVID-19 and Prolonged SARS-CoV-2 Replication in a CAR-T-cell
- 308 Therapy Recipient: A Case Study. Clin Infect Dis. **2021**:ciab072. doi:
- 309 10.1093/cid/ciab072. Epub ahead of print. PMID: 33507235; PMCID:
- 310 PMC7929077.
- 21. Sepulcri C, Dentone C, Mikulska M, Bruzzone B, lai A, fenoglio D, et al. The
- 312 longest persistence of viable SARS-CoV-2 with recurrence of viremia and
- 313 relapsing symptomatic COVID-19 in an immunocompromised patient a case
- 314 study. **2021**; MedRxiv doi: http://org/10.1101/2021.01.23.21249554.
- 315 22. Khatamzas E, Rehn A, Muenchhoff M, Hellmuth J, Gaitzsch E, Weiglein T et al.
- 316 Emergence of multiple SARS-CoV-2 mutations in an immunocompromised host.
- 23. Malsy J, Veletzky L, Heide J, Hennigs A, Gil-Ibanez I, Stein A, Lütgehetmann M,
- Rosien U, Jasper D, Peine S, Hiller J, Haag F, Schmiedel S, Huber S, Jordan S,
- 319 Addo MM, Schulze Zur Wiesch J. Sustained response after remdesivir and
- 320 convalescent plasma therapy in a B-cell depleted patient with protracted
- 321 COVID-19. Clin Infect Dis. **2020**:ciaa1637. doi: 10.1093/cid/ciaa1637. Epub
- 322 ahead of print. PMID: 33103195; PMCID: PMC7665388.

323	24. DeVine MN	, Maxwell S,	Haynes AS,	MacBrayr	ne CE, E	Boguniewicz .	J.
-----	---------------	--------------	------------	----------	----------	---------------	----

- 324 Management of an Immunocompromised Pediatric Patient With Multiple
- 325 Hospitalizations for Symptomatic COVID-19. J Pediatr Hematol Oncol. **2020**.
- doi: 10.1097/MPH.0000000000002014. Epub ahead of print. PMID: 33235142.
- 327 25. Helleberg M, Niemann CU, Moestrup KS, Kirk O, Lebech AM, Lane C et al.
- 328 Persistent COVID-19 in an Immunocompromised Patient Temporarily
- 329 Responsive to Two Courses of Remdesivir Therapy. J Infect Dis
- **2020**;222:1103-7.
- 26. London J, Boutboul D, Lacombe K, Pirenne F, Heym B, Zeller V et al. Severe
- 332 COVID-19 in Patients with B Cell Alymphocytosis and Response to

333 Convalescent Plasma Therapy. J Clin Immunol 2021;41:356-61.

334 27. Avanzato VA, Matson MJ, Seifert SN, Pryce R, Williamson BN, Anzick SL et al.

335 Case Study: Prolonged Infectious SARS-CoV-2 Shedding from an

- Asymptomatic Immunocompromised Individual with Cancer. Cell
- **2020**;183:1901-12.
- 338 28. Nakajima Y, Ogai A, Furukawa K, Arai R, Anan R, Nakano Y et al. Prolonged

viral shedding of SARS-CoV-2 in an immunocompromised patient. J Infect
Chemother **2021**;27:387-9.

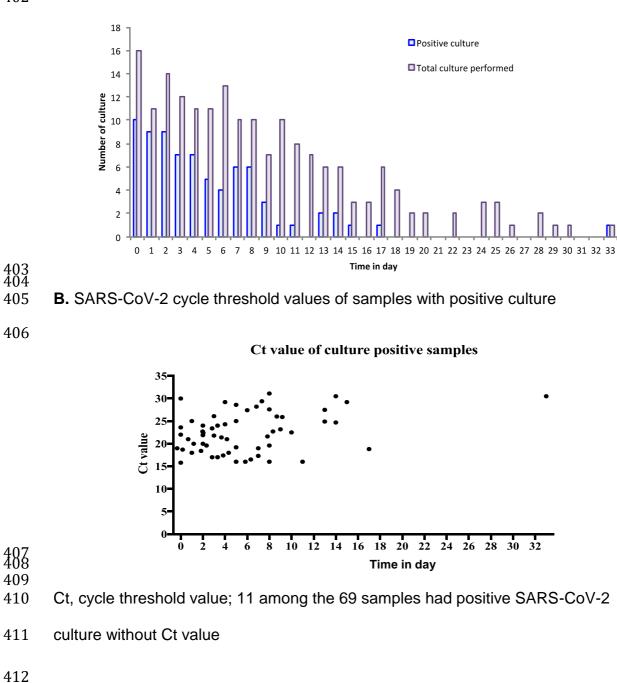
- 341 29. Hueso T, Pouderoux C, ParaH, Beaumont AL, Raillon LA, Ader F et al.
- 342 Convalescent plasma therapy for B-cell-depleted patients with protracted
- 343 COVID-19. Blood **2020**;136:2290-5.
- 344 30. Tarhini H, Recoing A, Bridier-Nahmias A, Rahi M, Lambert C, Martres P, Lucet
- 345 JC, Rioux C, Bouzid D, Lebourgeois S, Descamps D, Yazdanpanah Y, Le

346	Hingrat Q, Lescure FX, Visseaux B. Long term SARS-CoV-2 infectiousness
347	among three immunocompromised patients: from prolonged viral shedding to
348	SARS-CoV-2 superinfection. J Infect Dis. 2021: jiab075. doi:
349	10.1093/infdis/jiab075. Epub ahead of print. PMID: 33556961; PMCID:
350	PMC7928754.
351	31. Canarutto D, Del BP, Di FM, Del TF, Pajno R, Guarneri MP et al. Prolonged
352	asymptomatic SARS-CoV-2 infection in a child receiving immunosuppressive
353	therapy. Pediatr Pulmonol 2020;55:2504-5.
354	32. Tzarnas S, Kramer M, Alberti N, Chan V, Alam Khan MA, Madara J.
355	Convalescent plasma therapy in a refractory case of COVID-19 in an
356	immunocompromised patient. Crit Care Med 2021; Abstr. 181.
357	33. Pedro N, Silva CN, Magalhães AC, Cavadas B, Rocha AM, Moreira AC, Gomes
358	MS, Silva D, Sobrinho-Simões J, Ramos A, Cardoso MJ, Filipe R, Palma P,
359	Ceia F, Silva S, Guimarães JT, Sarmento A, Fernandes V, Pereira L, Tavares
360	M. Dynamics of a Dual SARS-CoV-2 Lineage Co-Infection on a Prolonged Viral
361	Shedding COVID-19 Case: Insights into Clinical Severity and Disease Duration.
362	Microorganisms. 2021;9:300. doi: 10.3390/microorganisms9020300. PMID:
363	33540596; PMCID: PMC7912897.
364	34. Wei L, Liu B, Zhao Y, Chen Z. Prolonged shedding of SARS-CoV-2 in an elderly
365	liver transplant patient infected by COVID-19: a case report. Ann Palliat Med.
366	2020:apm-20-996. doi: 10.21037/apm-20-996. Epub ahead of print. PMID:

- 367 **33183020**.
- 368 35. Buckland MS, Galloway JB, Fhogartaigh CN, Meredith L, Provine NM, Bloor S,
- 369 Ogbe A, Zelek WM, Smielewska A, Yakovleva A, Mann T, Bergamaschi L,

370	Turner L, Mescia F, Toonen EJM, Hackstein CP, Akther HD, Vieira VA, Ceron-
371	Gutierrez L, Periselneris J, Kiani-Alikhan S, Grigoriadou S, Vaghela D, Lear SE,
372	Török ME, Hamilton WL, Stockton J, Quick J, Nelson P, Hunter M, Coulter TI,
373	Devlin L; CITIID-NIHR COVID-19 BioResource Collaboration; MRC-Toxicology
374	Unit COVID-19 Consortium, Bradley JR, Smith KGC, Ouwehand WH, Estcourt
375	L, Harvala H, Roberts DJ, Wilkinson IB, Screaton N, Loman N, Doffinger R,
376	Lyons PA, Morgan BP, Goodfellow IG, Klenerman P, Lehner PJ, Matheson NJ,
377	Thaventhiran JED. Treatment of COVID-19 with remdesivir in the absence of
378	humoral immunity: a case report. Nat Commun. 2020;11:6385. doi:
379	10.1038/s41467-020-19761-2. PMID: 33318491; PMCID: PMC7736571.
380	36. Fournier PE, Colson P, Levasseur A, Gautret P, Luciani L, Bedotto M, Delerce J,
381	Brechard L, Lagier JC, Chaudet H, Fenollar F, Raoult D. Genome sequence
382	analysis enabled deciphering the atypical evolution of COVID-19 in Marseille,
383	France. MedRxiv 2021; doi: http://doi.org/10.35088/kmct-tj43.
384	

ACKNOWLEDGEMENTS.


386 None.

- **COMPETING INTERESTS.**
- 389 None to declare.

FUNDING.

- 392 This work was funded by ANR "Investissements d'avenir", Méditerranée infection 10-
- 393 IAHU-03, and was also supported by the Région Provence-Alpes-Côte d'Azur. This
- 394 work received financial support from the Mediterranean Infection Foundation.

- Figure 1. Culture results on 34 patients with persistent viral shedding (>17 days)
- **A.** Number of positive culture for SARS-CoV-2 among the number of culture
- 401 performed

415 **Table 1.** Summary of 34 COVID-19 patients with prolonged SARS-CoV-2 viral shedding ≥ 17 days, Marseille, France, March-April

416 2020.

Age (years), gender	Duration of viral shedding (days)	Cause of immunodepression	Serology	NEWS-2 score	Charlson (probability of death in the following year)	Treatment	Death (days), COVID-19- imputable	Genotype (amino acid substitutions or deletions in the spike)
60,M	24	-	+	5	2 (26%)	HCQ-AZ	-	N.a.
41, M	23	-	+	6	2 (26%)	HCQ-AZ	-	20A
21, M	20	-	N.a.	2	0 (12%)	HCQ-AZ	-	20C
41, M	20	-	+	0	1 (26%)	HCQ-AZ	-	20A
30, F	18	-	-	3	0 (12%)	HCQ-AZ	-	N.a.
43, M	19	-	N.a.	4	1 (26%)	HCQ	-	N.a.
37, M	21	-	+	0	0 (12%)	HCQ-AZ	-	20B
37, F	17	-	+	2	0 (12%)	HCQ-AZ	-	20A/25563T/2416T/8371T
74, M	25	-	N.a.	9	8 (85%)	AZ	-	20A
63, M	18	-	-	4	4 (52%)	HCQ-AZ	-	20A
61, F	40	-	+	4	3 (52%)	HCQ-AZ	-	20A
81, M	25	-	-	6	7 (85%)	AZ	-	N.a.
47, F	21	-	+	2	1 (26%)	HCQ-AZ	-	20B
93, F	17	-	N.a.	4	7 (85%)	AZ	-	N.a.
89, F	20	-	+	8	5 (85%)	HCQ-AZ	22, Yes	20A
28, F	26	-	+	2	0 (12%)	HCQ-AZ	-	20A
56, F	54	-	+	2	2 (26%)	HCQ-AZ	-	N.a.
69, M	31	-	N.a.	5	3 (52%)	HCQ-AZ	-	20C
71, M	18	-	+	7	5 (85%)	No HCQ, No AZ	-	N.a.
30, F	21	-	N.a.	5	0 (12%)	HCQ-AZ	-	20A/25563T/2416T/8371T
52, F	20	-	+	4	2 (26%)	HCQ-AZ	-	20A
88, F	17	-	+	7	7 (85%)	AZ	-	20A
70, F	17	-	+	8	6 (85%)	HCQ	289, No	20B
82, M	18	-	N.a.	4	7 (85%)	HCQ-AZ	-	N.a.
43, F	17	-	+	0	1 (26%)	HCQ	-	20C
69, M	19	-	N.a.	6	3 (52%)	HCQ-AZ	-	20A
90, F	25	-	N.a.	6	6 (85%)	HCQ-AZ	51, Yes	20A
76, M	23	-	+	11	5 (85%)	HCQ-AZ	-	N.a.
89, M	21	-	N.a.	12	7 (85%)	HCQ-AZ	-	20C
43, M	19	Lymphoma	+	4	3 (52%)	HCQ-AZ	-	N.a.
73, M	19	-	+	8	7 (85%)	HCQ-AZ	20, Yes	N.a.
64, F	22	-	+	2	3 (52%)	HCQ-AZ	-	N.a.
34, F	23	-	-	2	0 (12%)	HCQ-AZ	-	N.a.
69, F	25	Kidney transplantation	-	3	7 (85%)	HCQ-AZ	-	20A

417 N.a., not available; . HCQ-AZ stands for treatment combining hydroxychloroquine plus azithromycin \geq 3 days (refer to text for posology).

- 418 **Table 2.** Comparison biological data for 2,800 short shedders (nasopharyngeal
- 419 SARS-CoV-2 RT-PCR positivity < 10 days) and 34 persistent shedders
- 420 (nasopharyngeal SARS-CoV-2 RT-PCR positivity \geq 17 days).
- 421

	Sho	ort viral shedders	Pers	Persistent viral shedders		
		n=2,800		n=34		
Biological data	Ν	Mean (std)	N	Mean (std)		
Lymphocytes (G/L)	2,358	1.44 (0.64)	31	1.05 (0.47)*		
Neutrophils (G/L)	2,285	3.37 (1.8)	27	4.42 (2.6)		
Neutrophils/lymphocytes	2,285	2.84 (3.19)	27	4.71 (3.44)*		
Eosinophils (G/L)	2,347	0.08 (0.09)	31	0.04 (0.06)*		
D dimers (μg/mL)	457	0.99 (2.19)	19	1.25 (1.01)*		
Troponin (ng/L)	246	9.99 (12.18)	16	18.71 (18.79)*		
CRP (mg/L)	2,13	16.31(34.6)	31	31 (48.09)*		

422 CRP, C-reactive protein; * denotes statistical significance using the Chi-square, Fisher's

423 exact or Wilcoxon-Mann-Whitney test where appropriate and a 0.05 P value.

424

Table 3. Epidemiological, virological, and clinical features of cases of prolonged SARS-CoV-2 infections in immunocompromised

427 patients.

Reference	Gender, age (years)	Immunodepression cause	Duration of viral shedding	Remdesivir	Convalescent plasma or anti-spike antibodies	Other therapies(s)	Number of amino acid substitutions/deletions in the genome and/or in the spike protein	Outcome
17	Male, 45 y o.	Severe antiphospholipid syndrome	151 days	Days 0-4, 72-81, 105-109, 151-155	ASA: day 143	Glucocorticoids, cyclophosphamide, intermittent eculizumab and rituximab, ruxolitinib	24 substitutions, 3 deletions (spike: 12 substitutions, 1 deletion) among which substitution N501Y present in variants 20I/501Y.V1, 20H/501Y.V2 and 20J/501Y.V3 ^b , and E484K present in variants 20H/501Y.V2 and 20J/501Y.V3 ^b	Death on day 154
18	Not reported	Marginal B cell lymphoma (received B cell depletion therapy; hypogamma- globulinemia)	101 days	Days 41-, 54-, 93-	CP: days 63, 65, 95	-	Spike: 5 substitutions among which N501Y and deletion H69/V70 both present in 20I/501Y.V1 ^b	Not reported
19	Male, 60 y o.	Mantle cell lymphoma	156 days	Days 30-, 122-	CP: days 33, 122	CD20 bispecific antibody, second B-cell directed antibody, cyclophosphamide, doxorubicine, prednisone	6 substitutions	Pursued home hospice care
20	Male, 75 y o.	Multiple myeloma	71 days	Days 5-9	CP: days 2, 58	Dexamathasone (days 63- 74)	Spike: 9 substitutions between days 4 and 67, including D215G present in 20H/501Y.V2 ^{b,} Y144 deletion present in 20I/501Y.V1 ^c , and N501T at a position mutated in variants 20I/501Y.V1, 20H/501Y.V2 and 20J/501Y.V3 ^b	Death on day 74
21	Male, 60-70 yo.	Non-Hodgkin Iymphoma	268 days	Days 47-51, 77- 86, 178-182, 205- 209	CP: day 88	Darunavir/ritonavir, hydroxychlorquine, IV methylprednisolone, tocilizumbab, ceftaroline	26 substitutions; spike: 7 including H69Y/P and V70G at positions mutated in variant 20I/501Y.V1 ^b	Death on day 271
22	Female, 53 yo.	Follicular lymphoma	85 days	Days 63-72, 80- 84	CP: day 85 [°]	-	No genome sequencing reported	

430 Table 3 - Continued

Table 3 - Co	ontinued							
Reference	Gender, age (years)	Immunodepression cause	Duration of viral shedding	Remdesivir	Convalescent plasma or anti-spike antibodies	Other therapies(s)	Number of amino acid substitutions/deletions in the genome and/or in the spike protein	Outcome
23	Female, 17 yo.	Pre-B-cell acute lymphoblastic leukemia	100 days	Days 13-22, days 60-69	CP: day 61	Hydroxychloroquine for two days; methylprednisolone	No genome sequencing reported	qPCR-positive on day 100; no supplemental oxygen
24	Male, 50-60 yo.	Chronic lymphocytic leukemia	63 days	Days 23-33, days 45-55	CP: day 58	-	No genome sequencing reported	
25	Female, 41 yo.	Severe hypogammaglobuline mia	75 days	No	CP: days 71, 72	Prednisone	No genome sequencing reported	Discharge
25	Male, 65 y o.	Common variable immunodeficiency	40 days	No	No	Lopinavir/ritonavir, broad- spectrum antibiotics	No genome sequencing reported	Death on day 40
26	Female, 70-79 yo.	Follicular lymphoma	>134 days	No	CP: ≈days 45, 65, 95, 110, and 115	Steroids	24 substitutions, 2 deletions; spike: 3 substitutions including E484K present in variants 20H/501Y.V2 and 20J/501Y.V3 ^b ; one deletion Y144 present in variant 20I/501Y.V1 ^c	Death on day 156
26	Not reported	B-cell depleted lymphoma	91 days	No	No	N.a.	At day 19 post-diagnosis: 2 substitutions	Recovery
27	Female, 71 yo.	Chronic lymphocytic leukemia, hypogammaglobuline mia	105 days	No	CP: days 70, 80	-	6 substitutions and 1 deletion on day 49; spike: 2 substitutions; 3 additional substitutions (2 at day 70, 1 at day 85) and one additional deletion on day 70 in the spike	N.a.
28	Female, 47 yo.	Follicular lymphoma	59 days	No	No	Obinutuzumab bimonthly, acyclovir, atovaquone, favipiravir, ciclesonide, lopinavir/ritonavir	No genome sequencing reported	Discharge on day 69

432 Table 3 - Continued

Reference	Gender, age (years)	Immunodepression cause	Duration of viral shedding	Remdesivir	Convalescent plasma or anti-spike antibodies	Other therapies(s)	Number of amino acid substitutions/deletions in the genome and/or in the spike protein	Outcome
29	Not reported, median (range), 58 yo. (35- 77)	Hematological malignancies (n= 15); multiple sclerosis (1); common variable immune deficiency (1)	17 patients (median duration= 56 days; max.= 83 days)	N= 3	No	Anti-CD20 monoclonal antibodies (n= 15); steroids (8); hydroxychloroquine (n= 5); tocilizumab (n= 4); lopinavir/ritonavir (n= 2)	No genome sequencing reported	One death
30	Male, 66 y o.	HIV infection (CD4 cell count= 0/mm ³)	123 days	No	No	Multi-antiretroviral therapy	1 substitution, in the spike	Neurological degradation
30	Male, 71 y o.	Heart transplantation, diabetes mellitus	121 days	No	No	Prednisone, mycophenolic acid, belatacept	No occurrence of substitutions	N.a.
30	Male, 35 y o.	Rheumatoid arthritis	84 days	No	No	Rituximab	Occurrence of 6 substitutions, 1 the spike	Improvement
31	Female, 5 yo.	Dermatomyositis	35 days	No	No	Prednisolone	No genome sequencing reported	Resolution
32	Female, 60 yo.	Rheumatoid arthritis	>35 days	Day ≈30	CP: Week 5	Rituximab	No genome sequencing reported	Discharge
33	Female, 17 yo.	Previously healthy	97 days	No	No	Hydroxychloroquine for 5 days	Coinfection with two SARS-CoV-2 lineages (20A, 20B)	N.a.
34	Male, 61 y o.	Liver transplant	Negative on days 35 and 39, then positive again on days 41 and 48	No	No	Tacrolimus, lopinavir/ritonavir, amoxicillin, piperacillin sulbactam, Lianhua Qingwen	No genome sequencing reported	Discharge on da 55
35	Male, 31 y o.	X-linked agamma- globulinaemia	62 days (in sputum; 36 days in nasopharyngea I samples)	Days 34-43, 61- 70	CP: days 69, 70	Hydroxychloroquine/ azithromycine, meropenem, ceftriaxone, clarithromycin	5 substitutions; spike: 1 substitution	Discharge on da 73

^a As assessed by qPCR; ^b 20I/501Y.V1= "UK" variant, 20H/501Y.V2= "South African" variant, and 20J/501Y.V3= "Brazilian" variant; ^c at the end of second cure of remdesivir

436 ASA : anti-spike antibodies; CP: convalescent plasma; PML, progressive multifocal leukoencephalopathy