
Frontiers Medicine 1 

February 3, 2021 2 

Title: Cyclosporin A: a repurposable drug in the treatment of COVID-19 ? 3 

 4 

Running title: Cyclosporin A and COVID-19 5 

 6 

Christian A. DEVAUX,1,2*, Cléa MELENOTTE1, Marie-Dominique 7 

PIERCECCHI-MARTI3,4, Clémence DELTEIL3,4, and Didier RAOULT1 8 

 9 

1Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, 10 

France 11 

2 CNRS, Marseille, France  12 
3 Department of Legal Medicine, Hôpital de la Timone, Marseille University Hospital 13 

Center, Marseille, France 14 
4 Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France 15 

 16 
*Corresponding author :  17 

Christian Devaux, PhD 18 

IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385 Marseille, France 19 

Phone: (+33) 4 13 73 20 51 20 

Fax : (+33) 4 13 73 20 52  21 

E-mail: christian.devaux@mediterranee-infection.com 22 

 23 

Abstract length: 190 words; Manuscript length:,7817 words  24 

Figures: 7 25 

Table 4  26 

Keywords: SARS-CoV-2; COVID-19; Cyclosporin A; Cyclophilin; ACE2 27 



Summary: 28 

COVID-19 is now at the forefront of major health challenge faced globally, creating an urgent 29 

need for safe and efficient therapeutic strategies. Given the high attrition rates, high costs and 30 

quite slow development of drug discovery, repurposing of known FDA-approved molecules is 31 

increasingly becoming an attractive issue in order to quickly find molecules capable of 32 

preventing and/or curing COVID-19 patients. Cyclosporin A (CsA), a common anti-rejection 33 

drug widely used in transplantation, has recently been shown to exhibit substantial anti-34 

SARS-CoV-2 antiviral activity and anti-COVID-19 effect. Here we review the molecular 35 

mechanisms of action of CsA in order to highlight why this molecule seems to be an 36 

interesting candidate for the therapeutic management of COVID-19 patients. We conclude 37 

that CsA could have at least three major targets in COVID-19 patients: i) an anti-38 

inflammatory effect reducing the production of pro-inflammatory cytokines; ii) an antiviral 39 

effect preventing the formation of the viral RNA synthesis complex; and, iii) an effect on 40 

tissue damage and thrombosis by acting against the deleterious action of angiotensin II. 41 

Several preliminary CsA clinical trials performed on COVID-19 patients report encouraging 42 

data and suggest that this strategy should be investigated further. 43 
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Introduction 55 

The first outbreak of Coronavirus disease 2019 (COVID-19) was reported by China at the end 56 

of 2019 (Zhu et al., 2020; Huang et al., 2020; Frutos et al., 2020). Evidence was rapidly 57 

reported that the patients were infected by a novel Betacoronavirus lineage 2b/Sarbecovirus 58 

tentatively named 2019 novel coronavirus (2019-nCoV) before being known as SARS-CoV-2 59 

with respect to its phylogenetic relationship (80% nucleotide identity) with the SARS-CoV 60 

(Zhou et al., 2020). To date, it is the seventh characterized coronavirus described as capable 61 

of causing a respiratory infection in human. From the start of 2020, COVID-19 has become a 62 

global pandemic and has been declared a global health emergency by the World Health 63 

Organization (WHO). In one year, more than 75 million people were infected worldwide and 64 

this virus has caused more than 1.6 million deaths (https://coronavirus.jhu.edu/map.html, 18 65 

December, 2020). Depending on the health status, age and comorbidities (hypertension, 66 

coronay heart diseases, cerebrovascular diseases, diabetes, chronic kidney diseases) of the 67 

infected persons, SARS-CoV-2, may either be asymptomatic, give a picture of influenza 68 

infection, or induce severe forms of COVID-19 with acute respiratory distress syndrome and 69 

multiple organ failure syndrome which can lead to death in about 2,27% of infected 70 

individuals (Huang et al., 2020; Ksiazek t al., 2020, Qin et al., 2020). 71 

The SARS-CoV-2 is an enveloped RNA+ virus surrounded by spike (S) glycoproteins. The 72 

genomic length of SARS-CoV-2 is about 30 kb and encodes as many as 14 open-reading 73 

frames (ORFs) leading to the synthesis of 29 proteins (Wu et al., 2020; Chang et al., 2020). 74 

CoV have the largest viral RNA genomes known to date (e.g., human immunodeficiency 75 

virus genome is only 10 kb) and it was hypothesized that their expansion and selection was 76 

likely enabled by acquiring enzyme functions that counter the high error frequency of RNA 77 

polymerases (Snijder et al., 2016). During the early infection process, the trimeric SARS-78 

CoV-2 S1 spike first binds to the N-terminal portion of the angiotensin I converting enzyme 2 79 



(ACE2) which acts as viral receptor at the surface of susceptible cells (Yan et al., 2020). The 80 

cellular transmembrane protease serine 2 (TMPRSS2) contributes to enhance the S-protein-81 

driven viral entry (Hoffmann et al., 2020). After cleavage at the S1/S2 junction, the S2 take 82 

the conformation required for insertion of the fusion peptide into the cellular lipid bilayers. 83 

The viral nucleocapsid is thus delivered into the cytoplasm through the endocytic vesicle. 84 

After acidification of the late endosome, the action of cathepsin enables the uncoating of the 85 

genomic RNA. SARS-CoV-2 like other pathogenic CoVs, possesses a linear plus-sense strand 86 

RNA genome (gRNA) that has a 5' methylated cap and 3' poly-A tail, allowing its anchorage 87 

to ribosomes for the synthesis of polyprotein precursor. The two-thirds of this gRNA (about 88 

20Kb) is occupied by the ORF1a (expressed by genome translation) and ORF1ab (expressed 89 

by genome translation and ribosomal frameshift) and encodes the polyproteins precursors 90 

pp1a and pp1ab, respectively, giving rise to the production of 16 non-structural proteins 91 

(Nsps) by auto-proteolytic processing (Baruah et al., 2020). Among these Nsps, Nsp12 is an 92 

RNA-dependent RNA polymerase, Nsp3 and Nsp5 are proteinases, Nsp13 is a helicase, 93 

Nsp14 and Nsp15 are ribonucleases, and Nsp14 is a methyltransferase (involved in RNA cap 94 

formation). Regarding the other proteins, Nsp1 triggers host mRNA degradation and inhibits 95 

interferon signaling, Nsp2 modulates host survival signaling, Nsp3 acts as an interferon 96 

antagonist, Nsp4 participates to the assembly of virally-induced cytoplasmic double 97 

membrane vesicle formation, Nsp6 inhibits STAT1 nuclear translocation, among other 98 

functions while Nsp12, Nsp8, Nsp7 and Nsp13 forms a complex known as replicative 99 

machinery (Hillen et al., 2020; Wang et al., 2020) that bind the gRNA to neosynthesize 100 

different viral RNA molecules. The 3'-proximal third sequence of the gRNA serves as 101 

template for several sub-genomic mRNAs having common 3′ UTRs (Hussain et al., 2005) that 102 

encode the viral structural (the spike/S, the envelope/E, the membrane/M, and the 103 

nucleocapsid/N) and accessory proteins. The S, E, and M proteins are synthesised and 104 



anchored on the endoplasmic reticulum (ER) with the N protein translated in the cytosol. 105 

Post-translational modifications of viral proteins occur within the endoplasmic reticulum and 106 

trans-Golgi network vesicles. After assembly in the ER-Golgi intermediate compartment 107 

(ERGIC), where the E protein plays an essential role in virus assembly and the mature M 108 

protein shapes the virus. Mature virions are released from smooth-walled vesicles by 109 

exocytosis. The accumulation of knowledge relating to the intracellular cycle of replication of 110 

the virus as well as the nature of the interactions between the viral and cellular proteins is 111 

essential to choose in the large panel of FDA-approved therapeutic compound the molecules 112 

capable of blocking the deleterious effects of this virus in infected persons or to design new 113 

antiviral drugs. 114 

Because of the urgent need for safe and efficient therapeutic drugs able to lower morbidity 115 

and mortality of COVID-19, multiple clinical trials have been conducted including 116 

repurposing of antiviral drugs, anti-inflammatory molecules and also all kinds of low cost 'old' 117 

drugs known for their in vitro antiviral properties. Several independent studies reported in the 118 

literature had revealed the in vitro antiviral properties of cyclosporin A (CsA), a well 119 

characterized immunosuppressant largely used in the prevention of graft rejection. In vitro, 120 

this drug was shown to be active against different viruses and to inhibit coronaviruses 121 

replication, including that of HCoV-229E and SARS-CoV-1 (De wilde et al., 2011; Tanaka et 122 

al., 2013). (Table I). Unsurprisingly, when tested in vitro on SARS-CoV-2, CsA was also 123 

found to inhibit the replication of this new virus (Pizzorno et al., 2020). Moreover, the CsA-124 

analog alisporivir (called Debio-025) was also shown to block SARS-CoV-2 replication in 125 

vitro (Ogando et al., 2020; Softic et al., 2020). The question of CsA or CsA analogs use in the 126 

treatment of COVID-19 is now more pressing. 127 

 128 



Discovery of cyclosporin A, a cyclophins inhibitor, and FK506, an FKBPs inhibitor  129 

The cyclosporin story started in the 1969-70 at the Sandoz laboratories in Basel (Switzerland) 130 

The 11-amino-acid lipophilic cyclic peptide cyclosporin (CsA, also known as ciclosporin) of 131 

1.2 kDa molecular weight produced from the fungus Tolypocladium inflatum, and other 132 

microorganism such as Fusarium solani, Neocosmospora varinfecta and Aspergillus terreus 133 

(Borel et al., 1976), was found to exhibit immunosuppressive properties offering new hope to 134 

transplant surgeons to avoid patients' transplant rejection. The CsA cyclic peptide is insoluble 135 

in water and soluble in ethanol or in olive or sesame oil at 60°C and next can be kept in 136 

solution at room temperature. The olive oil soluble form of the peptide supplemented with 137 

12.5% ethanol was the first form of manufactured CsA for oral administration, which must be 138 

dispersed in juice or milk for ingestion (Nussenblatt and Palestine, 1986). CsA was introduced 139 

in clinical practice in 1978 (Calne et al., 1978). The bioavailability of the original corn-oil 140 

based preparation of cylosporine (Sandimmune®, Novartis Pharma) largely varied in 141 

cyclosporine blood levels among patients leading to the development of microemulsion 142 

formulation (Neoral®, Novartis Pharma) (Dun et al., 2001; Schiff et al., 2007). Usually, dose 143 

of 20 mg CsA/kg daily are recommended after solid organ transplant with progressive 144 

decrease every week down to 5 mg/kg daily while dose of 1 mg/kg daily is recommended 145 

after hematopoietic stem cell transplantation (Flores et al., 2019). Upon administration, CsA 146 

is absorbed at the intestinal level by the epithelial cells and the efficiency of this process is 147 

influenced by different factors such as dietary composition or bile flow. In the plasma, CsA is 148 

found bound to lipoproteins and spreads in the extravascular space (Kahan, 1989). CsA is 149 

metabolized by liver cells through the P450 3A4 (CYP3A4) leading to the generation of a 150 

number of metabolites (Wang et al., 2018). After a single dose of CsA, there is a peak of drug 151 

blood concentrations (Cmax) during the first 2 hours followed by elimination (C0) and the 152 

drug bioavailability should be carefully monitored in clinical settings using the Cmax and a 153 



measure of concentration each 2-hours (C0, C2, C4, C6, C8) to determine when an additional 154 

dose should be administered (Pedroso and Citteri, 2015). 155 

The mechanism of action of CsA was elucidated in 1984 with the isolation from thymocytes 156 

of cyclophilin (CyP), a 18 kDa highly basic charged cytosolic protein that binds CsA with 157 

high affinity (Handschumacher et al., 1984). Next, a structurally different 158 

immunosuppressant, a macrolide named FK506 isolated from Streptomyces tsukubaensis, 159 

emerged and was found to interfere with T cell activation through a similar mode of action 160 

than CsA leading to suppression of mixed lymphocyte reaction (MLR), IL-2 and IL-2 161 

receptor, IL-3, and g-interferon (Kino et al., 1987). Like CsA, FK506 binds to a member of 162 

peptidylproline cis-trans isomerase acitivity (PPIase), but instead of binding cyclophilin (also 163 

called rotamase) it binds the FK506-binding protein (FKBP) (Harding et al., 1989). Similarly, 164 

rapamycin, another immunosuppressant synthesized by Streptomyces hygroscopicus (a 165 

macrolid originally described in 1975 as an antifungal agent), also bind FKBP and more likely 166 

the FKBP12 and FKBP52 isoforms (Liu, 1993; Kang et al., 2008). The immunosuppressive 167 

effects of FK506 as well as rapamycin are considered independent of the chaperone function 168 

of FKBP. When complexed with ligands, FKBP adopts a conformation allowing its binding to 169 

calcineurin and the mammalian target of rapamycin (mTOR). FKBP can also bind the inositol 170 

1,4,5-triphosphate receptor (IP3R) Ca2+ channel, which is activated through phosphorylation 171 

by the protein kinase A (PKA), while its inactivation is induced through dephosphorylation by 172 

calcineurin (Cameron et al., 1995; Cameron et al, 1997). FKBP also binds to the ryanodine 173 

receptor (RyR) chanel, and the type 1 transforming growth factor beta (TGFb) receptor 174 

(Wang et al., 1994). Both CsA, FK506 (also known as fujimycin or tacrolimus) and 175 

rapamycin (or sirolimus) inhibit the phosphatase activity of calcineurin thereby preventing the 176 

dephosphorylation of the nuclear factor of activated T-cells (NF-AT) that is usually induced 177 

after Ca2+ binds to calmodulin, leading to the binding of calmodulin to calcineurin, a calcium-178 



calmodulin-activated serine/threonine-specific posphatase, which in turn is activated (Kang et 179 

al., 2008). In a model of liver fibrosis in rats, rapamycin was reported to inhibit mTOR, to 180 

demonstrate potent antifibrotic activity and to improve portal pressure (Patsenker et al., 2011).  181 

 182 

Cyclophilin function 183 

The main function of peptidylproline cis-trans isomerase, PPIases, is that of chaperone 184 

proteins involved in folding, assembly and trafficking of other proteins (Galat et al., 1993, 185 

Galat and Bouet, 1994). The human genome encodes seventeen cyclophilins, the peptidyl-186 

prolyl isomerase A (PPIA or CyPA also called Cyp-18a a cytosolic protein of molecular mass 187 

18 kDa) encoded by a gene located on chromosome 7, PPIB (CypB also called Cyp-22/p, an 188 

endoplasmic reticulum and golgi protein of molecular mass 22 kDa) encoded by a gene on 189 

chromosome 15, PPIC (CypC an endoplasmic reticulum and golgi protein of molecular mass 190 

33 kDa), PPID (CypD a mitochondrial protein of molecular mass 20 kDa; the cytosolic CyPD 191 

and CyPF are named CyP40), PPIE (CypE, a component of the spliceosomal apparatus), PPIF 192 

(CypF is a component of the mitochondrial permeability transition pore involved in apoptosis 193 

regulation), PPIG (CypG or SR-cyclophin or matrix-cyclophilin is a nuclear matrix protein 194 

which interacts with RNA polymerase II is a component of the spliceosomal apparatus), PPIH 195 

(CypH), NKTR (Cypp), PPIL1 encoded by the X-chromosome, PPIL2, PPIL3, PPIL4, PPIL6, 196 

PPWD1, RANBP2, and SDCCAG-10, respectively (Wang and Heitman 2005; Davis et al., 197 

2010). The CyPA exhibits multiple functions including folding of the procollagen I and 198 

transferrin, nuclear translocation of ERK1/2 kinases, transport of molecules to the plasma 199 

membrane through interaction with the Ig-like CD147 receptor, Cholesterol transport, nuclear 200 

export of zinc-finger protein-1, and stimulation of apoptosis (Uittenbogaard et al., 1998; 201 

Nigro et al., 2013). Although CyPA is mainly a cytosolic protein, there is also a secreted form 202 



of this molecule, which is produced in response to different inflammatory stimuli, particularly 203 

infection (Sherry et al., 1992). The secretion of CyPA is mediated via a vesicular transport 204 

pathway that depends on the Rho kinase activation (Bukrinsky, 2015). The secreted form of 205 

CyPA acts as a chemoattractant for monocytes, and leukocytes (Sherry et al., 1992; Xu et al., 206 

1992; Jin et al., 2004). To date, although several functions of most cyclophilin isoforms 207 

remain unknown, the different isoforms of cyclophilins exhibit domain-specific properties 208 

apart from their function as chaperones. For example, PPIA was found to bind the non-209 

receptor tyrosine kinase Itk playing a role in the maturation of thymocytes, PPIH and PPIL1 210 

respectively interacts with the hPRP4 and SKIP protein in the spliceosome, PPIE shows a 211 

RNA-specific isomerase activity. Beside encoding nineteen cyclophilins, the human genome 212 

encodes eighteen FK506-binding proteins (FKBPs) and a three parvulins, the smallest PPIases 213 

(Gray et al., 2015). 214 

It was reported that CsA can bind PPIA, PPIB, PPIC, PPID, PPIE, PPIF, PPIG, PPIH, PPIL1, 215 

NKTR, PPWD1, while PPIL2, PPIL6, RANBP2, SDCCAG-10 are incompetent to ligate CsA 216 

(Davis et al., 2010). ). (Figure 1). Special attention was reported to the CsA/CypA interaction 217 

and quantitative transcriptomics analysis (RNA-Seq) to classify the tissue-specific expression 218 

of the CypA gene indicated that this molecules is ubiquitously expressed (Fagerberg et al., 219 

2014). 220 

 221 

Recollection of CsA repurposing in AIDS' therapy 222 

Although the ability of CsA to block SARS-CoV-2 replication in vitro draw attention of 223 

clinicians for a possible repurposing of CsA in COVID-19, there is a precedent in the case of 224 

treatment of viral diseases with CsA which moderates the enthusiasm for a rapid 225 

experimentation of this drug in COVID-19. However, there is currently evidence that CsA can 226 



be beneficial in HIV treatment when CsA is given post-primo-infection in association with 227 

HAART (Table II), suggesting it may also be suitable in COVID-19. 228 

Based on the hypothesis according to which the multiplication of the human 229 

immunodeficiency virus (HIV) in the organism is all the more important as the CD4 cells are 230 

activated, 25-years ago CsA was considered as a possible drug to treat AIDS. During a press 231 

conference, the results of a preliminary CsA clinical trial carried out on AIDS patients by a 232 

medical doctors' team from the Laënnec hospital (Paris, France) in October 1985 were 233 

reported (Andrieu et al., 1986). Unfortunately, after the death of two HIV patients under CsA 234 

therapy, a campaign fueled by media tended to discredite this work (Nau and Nouchi, 1985; 235 

Dodier and Barbot, 2008). Among the critics it was emphasized that it was surprising to 236 

suggest using an immunosuppressant to treat a disease characterized by an 237 

immunosuppression (e.g., virus-induced progressive depleted of CD4+ lymphocytes being at 238 

the origin of AIDS). Despite the media attacks the pilot phase was continued by the Andrieu's 239 

team who reported on the CsA treatment of eight patients who were given 7.5 mg CsA/kg 240 

daily and concluded based on their observation that clinical trials with CsA would be worth 241 

pursuing (Andrieu et al., 1988). However, adverse effects of this experimental treatment were 242 

reported by another team, which published the results of a CsA pilot study on nine patients 243 

with AIDS (six presented with P. carinii pneumonia and three had Kaposi's sarcoma) who 244 

experienced severe toxic symptoms, one developed massive intravascular hemolysis and was 245 

withdrawn from the study after 13 days of treatment, the other also experienced severe 246 

symptoms which necessitated discontinuation of CsA therapy in six of them and the condition 247 

of all patients improves after therapy was stopped (Phillips et al., 1989). Although the results 248 

from this last clinical studies were disappointing, another study that enrolled 53 patients with 249 

renal transplantation the HIV-infection of whom was caused by an infected transplant or by 250 

blood transfusion indicated that after 5-years, the cumulative incidence of AIDS was lower in 251 



40 patients who received CsA than in 13 transplant patients receiving immunosuppressive 252 

treatment without CsA (Schwarz et al., 1993). Coming back to animal model to explore 253 

pathophysiology without putting patients at risk, it was shown by the Fauci's team that 254 

administration of CsA to monkeys inoculated with the simian immunodeficiency virus (SIV), 255 

was beneficial relatively to the kinetics of CD4 cells depletion (Martin et al., 1997). This 256 

result revived scientific debate on the use of CsA in the treatment of AIDS, but rather than 257 

using it as monotherapy on patients with declared AIDS (low CD4+ cell count), the choice fell 258 

on use of CsA in combination with highly active antiretroviral therapy (HAART) during 259 

primary infection based on the hypothesis that rapid shutdown of T cell activation in the early 260 

phase of primary infection could have long-term beneficial effect on the outcome of the 261 

disease. Pantaleo's team reported that during a 64 weeks follow-up, patients receiving CsA in 262 

combination with HAART consistently maintained significantly higher levels of CD4+ T cells 263 

than those taking HAART alone (Rizzardi et al., 2002). This promising result relaunched 264 

investigation on the use of CsA in AIDS (Vogel et al., 2004; Argyropoulos and Athanasia, 265 

2006; Markowitz et al., 2010; Sokolskaja et al., 2010; Hawley et al., 2013). More recently, 266 

Nicolas and colleagues reported the results of a clinical investigation, which concluded that 267 

unintegrated DNA forms of viral genome increased in the CsA treated group compared to 268 

controls, suggesting an anti-integration effect of the drug (Nicolas et al., 2017) (Figure 2). 269 

This is consistent with earlier data demonstrating that cell activation is dispensable for viral 270 

entry but is required for the HIV-1 provirus integration (Zack et al., 1990; Bukrinsky et al., 271 

1991; Benkirane et al., 1993). It will therefore have taken more than 30 years of research to 272 

begin to understand in which specific therapeutic conditions CsA can be beneficial in the 273 

treatment of AIDS. Altogether these results suggest  that the treatment with CsA can be 274 

beneficial in the prevention of AIDS but that the window of action of this treatment is narrow, 275 



limited to primary infection to prevent the integration of the viral genome while it is no longer 276 

efficient on the chronic infection once the provirus is integrated. 277 

 278 

Is there a perspective for the CsA repurposing in COVID-19?  279 

Immunocompromised patients, include patients with HIV, those receiving 280 

immunomodulatory therapy for autoimmune disease, patients with cancer, solid organ 281 

transplant recipients who are immunosuppressed to prevent complication associated to 282 

alloimmune responses are generally considered at risk for more severe viral infection because 283 

of their poor immune response. In transplant recipients, CsA and tacrolimus calcineurin 284 

inhibitors are the most prescribed drugs for prevention of alloimmune responses (Calne et al., 285 

1978; Starzl et al., 1989). Therefore the question of using CsA in COVID-19 recently come 286 

into debate since it remains unclear if immunosuppression in transplanted patients alters the 287 

predisposition to acquiring COVID-19 and/or modifies the disease outcome for better or 288 

worse (Rudnicka et al., 2020). Today, solid organ transplant recipients are listed as high-risk 289 

individuals for the development of severe forms of COVID-19 (Azzi et al., 2020) and there is 290 

a specific follow up of transplanted patients to evaluate their outcome when they become 291 

infected with SARS-CoV-2. It is generally admitted that immunosuppressive therapy in 292 

transplanted patients modulates humoral and cell-mediated immunity increasing the risk of 293 

severe infection when exposed to viruses (Kaltsas and Sepkowitz, 2012). In regard to this 294 

idea, some authors suggested pausing immunosuppressants drugs as a precaution in 295 

transplanted patients found positive for SARS-CoV-2 (Romanelli et al., 2020). Yet, it was 296 

also reported that transplanted patients have not been found more susceptible to viral 297 

infections and severe forms of COVID-19 than the general population (Colombo et al., 2014; 298 

Poulsen et al., 2020; Cour et al., 2020), which begs questions about the relationship between 299 

CsA treatment and COVID-19. An observational clinical study from Spain which followed 29 300 



kidney transplant recipients with COVID-19 reported a mortality of 12.5% in the group of 301 

patients under CsA therapy (n=23) compared to 50% mortality in the control group reduced in 302 

CsA (n=6), supporting the hypothesis that CsA therapy is safe and might be beneficial to 303 

transplanted patients with COVID-19 (Rodriguez-Cubillo et al. 2020). However, this study 304 

should be interpreted with caution due to other drugs used in these patients with differences 305 

according to the subgroups: Mycophenolate and/or mammalian target of rapamycin inhibitors 306 

(mTORi) were discontinued in all patients, hydroxychloroquine was used in all patients, two 307 

third of the patients were given high-dose steroid, one third received intraveinous 308 

immunoglobulin, one third were given an interleukin-6 (IL-6) inhibitor. Observational studies 309 

have shown that patients receiving CsA for the prevention of graft versus host (GVH) disease 310 

have a lower risk of developing a COVID-19 infection than patients receiving basic treatment 311 

with tacrolimus or corticosteroids (Table III). Interestingly, in a recent study including 40 312 

kidney-transplanted patients, Demir and colleagues identified by using a multivariable 313 

analysis that the use of CsA was associated with a lower incidence of death (0.077 [95% CI, 314 

0.018‐0.324; P ≤ .001]) (Demir et al., 2020). The question currently being raised is whether 315 

the background immunosuppressive therapy in transplanted patients should be modified, 316 

when possible, by CsA to prevent the occurrence of COVID-19 (Poulsen et al., 2020).  317 

At least eight FDA-approved clinical trials of CsA are currently underway in patients with 318 

severe COVID-19 (Table IV). Recently, an open-label, non-randomized pilot clinical study 319 

on 209 adult patients confirmed positive for SARS-CoV-2 receiving enoxaparin, 320 

methylprednisolone or prednisone compared the clinical outcome of 105 patients who 321 

received CsA (oral CsA at a dose of 1-2 mg/kg daily) plus steroids to that of 104 patients 322 

treated with steroids alone and concluded that CsA used as adjuvant to steroid treatment 323 

improves outcomes of patients with moderate to severe forms of COVID-19 and reduces 324 

mortality (Galvez-Romero et al., 2020).  325 



Altogether, these results suggest that CsA could have a beneficial effect in the treatment of 326 

COVID-19 patients and that such repurposing strategy should be further investigated while 327 

being aware of possible side effects. In addition, these data also raise questions about the 328 

mechanisms by which CsA might influence the outcome of COVID-19. 329 

 330 

CsA and Cyclophilin in proinflammation processes: implication forCOVID-19 331 

Upon entering the cell, the immunosuppressants CsA and FK506 bind with high affinity to 332 

CyPs (also named immunophilins) and inhibit their peptidyl prolyl cis-trans isomerase 333 

activities. The CyP-CsA (or FKP-FK506) complex bind to calcineurin and inhibit its 334 

phosphatase activity. Many of the suppressive actions of CsA on T cells appear to be due to 335 

an inhibition of T cell receptor (TCR)-induced activation signals with minimal effects on 336 

already activated CD8+ cytotoxic T cells (Shevach, 1985). Although CSA affects T cell 337 

differentiation, proliferation and cytokines production, these cells still express the interleukin-338 

2 receptor (IL-2R) and proliferate under IL-2 stimulation (Herold et al., 1986, Granelli-339 

Piperno, 1988). However, CsA can apparently also trigger a status on T cell-mediated 340 

autoimmunity (Prud'homme et al., 1991). CsA inhibits the development of both CD4+CD8neg 341 

T-cells and CD4negCD8+ T cells lineages (Jenkins et al., 1988). CsA inhibits a T cell receptor 342 

dependant calcium-dependent signal-transduction pathway and blocks T cell proliferation by 343 

inhibition of the IL-2 synthesis and this is achieved after forming a complex with CyPA. In 344 

absence of CsA, TCR-induced activation signal trigger Ca2+ binding to calmodulin, that leads 345 

calmodulin to form a complex with calcineurin, a calcium/calmodulin-dependent serine 346 

threonine phosphatase. The activation of calcineurin triggers dephosphorylation of the 347 

cytoplasmic nuclear factor of activated T-cells (NF-ATcP). Once dephosphorylated, NF-ATc 348 

translocates from the cell cytoplasm into the cell nucleus and activates the transcription of the 349 



IL-2 gene (Chow et al., 1999). Under CsA treatment, the CsA/CyPA complex specifically 350 

binds to calcineurin and inhibits its phosphatase function (Liu et al., 1991; Kang et al., 2007). 351 

Due to a lack of phosphatase activity, the nuclear factor of activated T cells (NFAT) remain 352 

under its inactive cytoplasmic phosphorylated form (NF-ATcP). In vivo studies have 353 

highlighted that CsA promote the expansion of Foxp3+ T regulator cells (Treg) (Ruppert et 354 

al., 2015). Indeed, the result of CsA treatment is a change in the balance between T helper 355 

cells and Treg that favor the Treg population. The CypA is regulated by inflammatory stimuli, 356 

and several cell-types secrete CypA in response to oxidative stress. Zhang and colleagues also 357 

reported that serum CypA correlated with serum interleukin-6 (IL-6), matrix 358 

metalloproteinase-9 (MMP-9) and C-reactive protein expression (Zhang et al., 2018). It was 359 

recently reported that the secreted CypA can be used as a potential inflammatory biomarker of 360 

chronic obstructive pulmonary disease (COPD), as its expression levels are elevated in serum 361 

of COPD' patients and reflects the severity of inflammation (Zhang et al., 2018). 362 

 363 

Pathological similarities between transplanted patients and COVID-19 patients: tissues 364 

injuried with picture of chronic vascular rejection 365 

In our experience, significant parallels are observed between SARS-CoV-2 tissue injury and 366 

allograft rejection and especially with chronic vascular rejection (Stewart et al., 2007; Roden 367 

and Tazelaar, 2018). In tissues of patients died from COVID-19 (Figure 3), similar lesions to 368 

those observed in chronic vascular rejection grade D were observed (Stewart et al., 2007). 369 

Vascular rejection is characterized by concentric thickened arteries and/or veins, due to 370 

fibrointimal connective tissue. These lesions usually starts with intimal proliferation, then 371 

fragmented and discontinuous internal elastic lamina. Concurrent endovasculitis has also been 372 

observed (Roden and Tazelaar, 2018). In patients suffering from GVH disease, lung 373 



histological lesions are characterized by alveolar changes (intra-alveolar fibrin, organizing 374 

pneumonia, and chronic interstitial pneumonia), atypical pneumocytes, intra-epithelial 375 

bronchiolar T cells and perivenular cuffing (Yousem, 1995; Xu et al., 2013; Goker et al., 376 

2001; Murphy, 2020).  377 

Lung analysis of patients died from COVID-19 showed an inflammatory perivascular 378 

lymphocytes infiltration that presents some similarities to those observed in GVH (Figure 4), 379 

although non-specific (Deshmukh et al., 2020). Perivascular inflammation was reported to be 380 

patchy and scattered, composed mainly of lymphocytes, with thrombi in the branches of the 381 

pulmonary artery and focal areas of congestion in the alveolar septal capillaries, as well as 382 

septal capillary lesions with wall and luminal fibrin deposition (Deshmukh et al., 2020). 383 

In these diseases, critical epithelial stem cell populations are preferentially targeted, in one 384 

instance by cytotoxic immune pathways, in the other by a viral protein-receptor interaction. 385 

Moreover, in both diseases again, severe injuries are mediated by cytokine deregulation 386 

named the « cytokine storm syndrome » which lead to cells apoptosis. Cytokine dysregulation 387 

has historically been reported in the early phase of acute GVH disease described by Ferrara as 388 

a "cytokine storm" (Ferrara et al., 1993) and subsequently used to describe the exacerbated 389 

immune response observed in severe COVID-19 infection (Mehta et al., 2020, Melenotte et 390 

al., 2020). Thus, it could explain some of the histological similarities observed, even chronic, 391 

since physiological mechanisms involved in these lesions are, in part, common. Stem cells 392 

death by apoptosis is associated with activation of the p53-p73 ‘suicide pathway’ observed in 393 

GVH disease and perivascular lymphocyte infiltrates were identified in case of GVH disease 394 

(Sostak et al., 2009, 2010; Al-Hashmi et al., 2011; Zhan et al., 2012). 395 

 396 

COVID-19 infection in transplanted patients 397 



Recipients of allogeneic hematopoietic stem cell transplant (HSCT) are generally 398 

considered at particular risk of developing severe forms of COVID-19 when infected with 399 

SARS-CoV-2 due to the profound immunosuppression relates to this procedure expected to 400 

reduce the immune defense of the host thereby favoring in vivo viral replication. It was 401 

reported that treatment with the selective JAK1/2 inhibitor ruxolitinib has shown promising 402 

results in the context of COVID-19 patients with GVH disease (Saraceni et al., 2020). In 403 

COVID-19 the tissues injury observed in patients with severe forms of the disease appears to 404 

be related to a massive increase of inflammatory cytokines level and increase of CD15+CD16+ 405 

neutrophils known for being involved in proinflammatory processes (Li et al., 2019; Vitte et 406 

al., 2020). It is currently admitted that the severe forms of COVID-19 are associated with a 407 

release of cytokines and chemokines such as IL-2, IL-6, IL-7, IL-10, tumor necrosis factor 408 

(TNF), and granulocyte colony-stimulating factor (GCSF) (Huang et al., 2020; Tay et al., 409 

2020).  410 

Among these cytokines therapeutic approaches targeting excessive inflammation caused by 411 

IL-6 interaction with its cellular receptor IL-6R have been under investigation using IL-6 412 

antagonists such as tocilizumab and sarilumab used in the treatment of autoimmunity (Hojyo 413 

et al., 2020; de Caceres et al., 2020; Tsai et al. 2020; Gremese et al., 2020). It was recently 414 

shown that the total number of CD4+ T cells, CD8+ T cells, B cells, and NK cells in patients 415 

was markedly decreased in the most severe forms of COVID-19 and that there is an increase 416 

of IL-2, IL-6, IL-10 and IFN-g (Zheng et al., 2020; Luo et al., 2020; Liu et al., 417 

2020)(Melenotte,OncoImmunology,2020). There is likely space for investigating the possible 418 

beneficial effect of immunosuppressant CsA therapy in COVID-19, since this molecule is 419 

known to reduce the IL-2 production that contribute to the cytokine storm reported in the 420 

severe forms of COVID-19 (Figure 5). It is also worth noting that the Nsp1 protein found to 421 

have multiple functions (e.g., binds to 40S ribosomal subunit and inhibit translation; triggers 422 



host mRNA degradation by endonucleolytic cleavage; induces cell cycle arrest; inhibits IFN 423 

signaling) was reported in SARS-CoV to enhance IL-2 production when overexpressed and 424 

that SARS-CoV infection increase signaling through the Calcineurin/ NFAT (Pfefferle et al., 425 

2011). Such Nsp1 induction of IL-2 production is probably also occurring with SARS-CoV-2.  426 

 427 

CsA and Cyclophilin in viral infectious processes: implication for COVID-19 428 

Different isoforms of cyclophilins CyPA and CypB were reported to specifically bind a 429 

proline-containing sequence in the polyprotein Pr55gag and the p24gag capsid protein of the 430 

human immunodeficiency virus type 1 (HIV-1) and CsA disrupts the interaction of these 431 

proteins with CyPA and also with CyPB although with less efficiency (Luban et al., 1993). In 432 

vitro, CsA was reported to inhibit the replication of HIV-1 (Briggs et al., 1999). The 433 

nonimmunosuppressant analogue of CsA, SDZ NIM 811 (Sandoz), was also found to inhibit 434 

HIV-1 in vitro (Steinkasserer et al., 1995) 435 

Beside HIV-1, CsA was reported to inhibit the vesicular stomatitis virus (Bose et al., 2003), 436 

the hepatitis C virus (HCV) (Watashi et al., 2003; Nakagawa et al., 2004), the human 437 

papillomavirus (HPV)-16 (Bienkowska-Haba et al., 2009), the influenza A virus (Liu et al., 438 

2009), the Rift valley fever virus (Ianevski et al., 2018). Regarding the HCV, the RNA-439 

dependent RNA polymerase NS5B from the virus binds the human CypA and CypB proteins 440 

(Watashi et al., 2005; Chatterji et al., 2009) and CypA was also found to interact with the NS2 441 

protein of HCV (Ciesek et al., 2009) while CypB appeared to regulate with the HCV 442 

polymerase and CyP40 seems to also be involved in HCV replication (Goto et al., 2009). First 443 

a 3.5 log reduction of HCV load was demonstrated with the CsA analog DEBIO-025 (Flisiak 444 

et al., 2008). In light of these results, clinical trials of Cyp inhibitors (DEBIO-025, SCY635, 445 

and NIM811) have started against HCV and a very elegant in vitro work evidenced that 446 



NIM811 reduces HCV replication by inhibiting CyPs, including CyPA, CypH and CyPE and 447 

identified many cellular compounds interacting with these CyPs (Gaither et al., 2010).  448 

Similarly, in flaviviruses, it was reported that CsA blocks West Nile virus, Dengue -2 virus 449 

and Yellow Fever virus replication. CsA was found to inhibit the interaction between CypA 450 

and the NS5 protein (and also CyPA and viral RNA) of the West Nile Virus (Qing et al., 451 

2009), while CyPB was found to interact with the NS4A protein of the Japanese encephalitis 452 

virus (Kambara et al., 2011) suggesting that CyP isoforms are essential to the replication 453 

complex of flaviviruses.  454 

Regarding coronaviruses, it was reported that CsA inhibits the human coronavirus HCoV-455 

NL63, HCoV-229, and SARS-CoV-1 as well as animal coronaviruses such as feline CoV and 456 

porcine CoV, suggesting that CyPs are required for successful replication of most 457 

coronaviruses (Pfefferle et al., 2011). Once inside cell, the genomic RNA (positive) from each 458 

coronavirus is released from the viral particle present in late endosomes. Covered with a cap 459 

allowing its anchorage to the ribosome level, this genomic RNA serves as template for the 460 

translation of two large open reading frames (ORF1a and ORF1b). This yields to the synthesis 461 

of the polyprotein 1a (pp1a) and following a -1 ribosomal frameshift it leads to the extended 462 

pp1ab polyprotein. After proteolysis, several non structural proteins (Nsp) are produced 463 

including a RNA-dependent RNA polymerase which interacts with other Nsp compounds to 464 

form, together with host protein including CyP proteins, the endoplasmic-reticulum-derived 465 

double- membrane-associated replication transcription complex required for the synthesis of 466 

all viral molecules which enter in the composition of de novo viral particles (Pedersen et al., 467 

1999; Hagemeijer et al., 2012; Van Hemert et al., 2008). The antiviral properties of CsA 468 

against HCoV-229E and SARS-CoV-1 were confirmed in an independent in vitro work which 469 

conclude that CsA strongly affect replication of coronavirus HCoV-229E and SARS-CoV-1 470 

rendering RNA and protein synthesis almost undetectable (de Wilde et al., 2011). It was also 471 



reported that CyPA interacts with the SARS-CoV-1 nucleocapsid (N) protein (Luo et al., 472 

2004; Chen et al., 2005). A genome-wide SARS-CoV-1 screening of viral proteins interacting 473 

with cellular compounds (human cDNA libraries) performed using the yeast two hybrid 474 

strategy revealed that the Nsp1 protein of SARS-CoV-1 binds FKBPs (Pfefferle et al., 2011). 475 

It was also reported that FK506 inhibits the replication HCoV-NL63, HCoV-229, and SARS-476 

CoV-1 and that the inhibition of HCoV-NL63 replication by FK506 occurs through inhibition 477 

of the FKBP1A/B, suggesting that both FKBPs and CyPs families of PPIases are involved in 478 

coronaviruses replication (Carbajo-Lozoya et al., 2012). It is worth noting that both siRNA-479 

mediated CyPA depletion and shRNA-mediated CyPA depletion so far failed to trigger 480 

reduction of SARS-CoV-1 replication, suggesting either that SARS-CoV-1 transcription 481 

mainly involves FKBPs and/or CyP other than CyPA or that the residual CyPA present in 482 

cells after treatment was sufficient to achieve the building of the replication complex (de 483 

Wilde et al., 2011; de Wilde et al., 2018). CsA was also reported to inhibit the replication of 484 

MERS-CoV, a result which was more drastic when CsA was combined with interferon (IFN)-485 

a (Li et al., 2018). It was reported that CsA upregulates the interferon regulatory factor 1 486 

(IRF1) signaling pathway and that inhibition of IRF1 allows viral replication despite the 487 

presence of CsA. The SARS-CoV-1 virulence factor Nsp1 antagonize the IFN immune 488 

response (Wathelet et al., 2007; Zust et al, 2007).  489 

During the replication cycle of SARS-CoV-2, the RNA-dependent RNA polymerase (RdRp) 490 

required for the replication of the virus is active within a complex that assemble several non-491 

structural protein of the virus including Nsp12, Nsp8, and Nsp7 as well as cellular proteins 492 

likely including members of the CyP protein family. Within this replicative machinery (that is 493 

a target for the FDA-approved triphosphate metabolite Remdesivir), the active site cleft of 494 

nsp12 (RdRp) binds to the first turn of gRNA template , while nsp8 is involved in the 495 

formation of sliding poles regulating the processivity of the RdRp (Hillen et al., 2020; Wang 496 



et al., 2020). The Nsp12 needs to associate with Nsp8 and Nsp7 to activate is capability to 497 

replicate long RNA. The nsp13 helicase is also present in the SARS-CoV-2 replication 498 

complex and facilitate the RdRp function (Yan et al., 2020). Recently, the antiviral activity of 499 

CsA was evaluated in vitro on Vero E6 cells infected by SARS-CoV-2 and treated 1 hour post 500 

infection with serial drug dilutions and it was reported an anti-SARS-CoV-2 at 50% effective 501 

concentration (EC50) of 3.5 µM to be compared to 1.5 µM for chloroquine and 5.2 µM for 502 

lopinavir (Pizzorno et al., 2020). Interestingly, the non-immunosuppressive CsA-derivatives 503 

Alisporivir (Debio025) previously reported to inhibit the in vitro replication of the human 504 

coronavirus HCoV-NL63 (Carbajo-Lozoya et al., 2014), was assayed for SARS-CoV-2 505 

inhibition on Vero E6 cells infected for 3 hours at a MOI of 0.05 and was found to reduce 506 

SARS-CoV-2 production in a dose-dependent manner, with an EC50 of 0.46 µM (Softic et 507 

al., 2020). These results suggest that CsA inhibits the viral replicative machinery likely 508 

though interaction with a member of the CyP family. Although CyPA depletion so far failed 509 

to trigger reduction of SARS-CoV-1 replication (see above) a function for CyPA in SARS-510 

CoV-2 replication cannot be excluded. It was also previously reported that the transmembrane 511 

glycoprotein CD147 (also known as extracellular matrix metalloproteinase inducer 512 

EMMPRIN) is facilitating viral replication by interacting with the N protein of SARS-CoV-1 513 

through CyPA (Liu et al., 2020). CD147 was also reported to bind extracellular CyPB and to 514 

stimulates T-lymphocytes (Allain et al., 2002). In COVID-19 patients the anti-CD147 515 

antibody Meplazumab was claimed to improve patients' recovery, suggesting a role for the 516 

CyPA/CD147 complex in SARS-CoV-2 replication similar to that previously described for 517 

SARS-CoV-1 (Bian et al., 2020). Finally, in their very elegant work, Gordon and colleagues 518 

set up a SARS-CoV-2 protein interactome map which identified 332 high-confidence protein 519 

interactions between SARS-CoV-2 proteins and human cellular compounds. This study 520 

revealed that the nsp2 protein of SARS-CoV-2 interacts with FKBP15, and that the ORF8 of 521 



SARS-CoV-2 interacts with FKBP7 and FKBP10 (Gordon et al., 2020). Altogether, these 522 

results suggest that CsA acts at different levels in infected cells to prevent the SARS-CoV-2 523 

replication cycle (Figure 6). 524 

 525 

CsA and Cyclophilin in the renin angiotensin system (RAS) pathway: implication for 526 

COVID-19 527 

More than two decade ago, it was shown that the formation of abdominal aortic aneurysm in 528 

the rat model of elastase infusion was attenuated by CsA treatment (Dobrin et al., 1996). 529 

CyPA is known to promote atherosclerosis through stimulation of low-density lipoproteins 530 

uptake, decrease of endothelial nitric oxide synthase (eNOS) expression, increase of vascular 531 

cell adhesion molecule 1 (VCAM-1), and induction of tumor necrosis factor alpha (TNFa) 532 

(Nigro et al., 2011). It was reported that deletion of CyPA in mice prevents the formation of 533 

abdominal aortic aneurysm in response to infusion of angiotensin II (Ang II) (Satoh et al., 534 

2009).  535 

Although CyPA is an intracellular molecule, it can be secreted from macrophages in response 536 

to inflammatory stimuli acting as a chemoattractant of monocytes (Sherry et al., 1992) and it 537 

is also secreted by endothelial cells and vascular smooth muscle (VSM) cells, stimulates 538 

proinflammatory signals thereby contributing to cardiovascular diseases (Jin et al., 2000; 539 

Suzuki et al., 2006). Extracellular CyPA triggers IkBa phosphorylation that activates the 540 

nuclear translocation of NF-kB into the cell nucleus stimulating the transcription of vascular 541 

cell adhesion molecule 1 (VCAM-1) and E-selectin (Jin et al., 2004). Indeed, CypA secretion 542 

is regulated by Rho-kinase and behave as a secreted oxidative-stress molecule contributing to 543 

the pathogenesis of arteriosclerosis, hypertension and heart failure and inhibition of Rho-544 

kinase by fasudil reduces the angiotensin II-induced aortic aneurysm formation (Wang et al., 545 



2005; Satoh, 2015). Reactive oxygen species (ROS) were found to contribute to the 546 

pathogeneis of artheriosclerosis through induction of extracellular signal regulated kinases 547 

ERK1/2 and p38 MAP kianse signaling which stimulated VSM cells growth (Rao et al. 1992; 548 

Baas et al., 1995; Taniyama et al., 2004). ROS-induced VSM cells growth and 549 

proinflammatory signal have been implicated in the revascularization of obstructive coronary 550 

artery disease and the pathogenesis of neointima following vascular injury (Satoh et al., 551 

2010). Serum levels of CyPA were found elevated in coronary artery disease (Ramachandran 552 

et al., 2014; McClements et al., 2016; Alfonso et al., 2019). CypA secreted from blood vessels 553 

and heart cells regulates signal pathways and causes a decline of diastolic and systolic 554 

function leading to proliferation of cardiac fibroblasts, the occurrence of cardiac hypertrophy 555 

and remodeling (Cao et al., 2019). 556 

Taniyama and colleagues reported that Ang II activates p38 MAPK inducing an Akt signaling 557 

pathway that results in VSM cells activation and suggested that the ROS-sensitive 3-558 

phosphoinositide-dependent proteine kinase 1 (PDK1) phosphorylates Akt and that a parallel 559 

pathway that requires NADPH oxidase (NOX)-dependent production of ROS (including 560 

superoxide anions O2-, hydrogen peroxide H2O2 and hydroxyl radical OH) triggers p38 561 

MAPK activation that in turn activates Akt (Taniyama et al., 2004). CyPA was also found to 562 

be involved in the translocation of NOX enzymes and the two molecules synergizes to 563 

increase ROS production (Soe et al., 2013). Finally, it was also reported that Ang II trigger 564 

the release of CyPA and the activation of metalloproeinase 2 (MMP-2) in VSM cells derived 565 

from human abdominal aortic aneurysm (Nigro et al., 2013). AngII type 1 receptor (AT1R) 566 

blockers have been shown to prevent cardiovascular diseases (Cassis et al., 2007). During 567 

treatment with simvastatin (a member of the statin family which inhibits the 568 

hydroxymethylglutaryl CoA reductase), patients with abdominal aortic aneurysm were found 569 

to have reduced CypA mRNA expression as well as reduced CyPA intracellular protein levels 570 



(Piechota-Polanczyk et al., 2013). Interestingly, in a mice model, the deletion of CyPA gene 571 

prevented the formation of abdominal aortic aneurysm usually observed in response to 572 

infusion of Ang II (Satoh et al., 2009).  573 

In SARS-CoV-2 infected individuals, the host angiotensin-converting enzyme A (ACE2) 574 

monocarboxypeptidase serves as cell-surface receptor for the virus which interacts with ACE2 575 

by the receptor binding domain present in its spike (S) protein (reviewed in Devaux et al., 576 

2020b). We have recently found evidence that SARS-CoV-2 infected cells have a down 577 

regulation of ACE2 mRNA expression and a reduced cell surface expression of ACE2, and 578 

that COVID-19 patients have decreased soluble ACE2 and increased levels of AngII in their 579 

plasma (Submitted for publication). Beside a vasoconstrictor and thrombotic effects of AngII, 580 

the dysregulation of the renin-angiotensin pathway with the massive AngII accumulation is 581 

likely to promote the production of proinflammatory cytokine via AT1R interaction, by 582 

activating the metalloprotease 17 (ADAM-17) which can process the membrane anchored 583 

TNFa to a soluble TNFa which acts as an activator of NF-KB and, IL-6Ra to a soluble forms 584 

sIL6Ra  which can form complex with IL-6 and activates a STAT3 signaling pathway 585 

(Eguchi et al, 2018, Hirano and Murakami, 2020). Since Ang II triggers the release of 586 

extracellular CyPA through regulation of Rho-kinase and that extracellular CyPA behave as a 587 

secreted oxidative-stress molecule triggering the activation of the NF-kB that stimulate the 588 

transcription of vascular cell adhesion molecule 1 (VCAM-1), E-selectin and overexpression 589 

of TNFa, the inhibition of CyPA with CsA in COVID-19 patients could reduce 590 

atherosclerosis, hypertension and heart failure. Interestingly, the treatment of COVID-19 591 

patients with a recombinant soluble human ACE2 (hrsACE2 from Apeiron Biologics) which 592 

can interfere with virus binding but also with AngII reduced SARS-CoV-2 load, and induced 593 

a massive decrease of AngII levels, IL-6 and TNF in patients and showed strong benefit for 594 

the outcome of the patients (Zoufaly et al., 2020) (Figure 7).  595 



 596 

Conclusion 597 

The emergence of the COVID-19 pandemic about one year ago has stressed healthcare 598 

systems worlwide and beside improving patients' care as knowledge of disease improves, 599 

there was a global race to identify as fast as possible effective drugs to treat SARS-CoV-2 600 

infected patients while waiting to be able to protect individuals with an effective vaccine 601 

(Gautret el al., 2020). Since no antiviral was specifically developed against this new 602 

coronavirus, the number of clinical trials of molecules expects to interfere with the viral 603 

replication cycle or to modulate the immune response has been greater than ever. In this 604 

emergency context, the fastest strategy that has been followed by the majority of healthcare 605 

teams has been the repositioning of molecules already approved by the US Food and Drugs 606 

Administration. Among other molecules, there is ample evidence that CsA may represent a 607 

molecule to be tested further in its repurposing therapeutic strategy to treat patients with 608 

severe forms of COVID-19. This molecule is widely available, it is FDA-approved, it is 609 

affordable, it prevents pro-inflammatory processes, it blocks SARS-CoV-2 replication, and it 610 

interferes with angiotensin II harmful effects.  611 

Therapeutic doses of CsA are usually in the range of 10 to 20 mg/kg daily when given orally. 612 

A wide variability in CsA pharmacokinetics has been observed after the oral or intraveinous 613 

administration of this drug to patients and varies with respect to organ grafted, age of patient 614 

and patient health status. CsA is absorbed in the gastrointestinal tract and almost completely 615 

metabolized in both the liver and small intestine by cytochrome P450 family 3 (CYP3A). CsA 616 

is also given as intravenous infusion using 2.5 to 5 mg/kg daily. CsA bioavailability in 617 

patients range from 5% to 90%. The CsA concentration required to inhibit virus replication 618 

exceeds the serum concentration of the drug that are usually well below 200ng/mL 619 

(Ptachcinski et al., 1986). A major challenge is to obtain appropriate concentration of CsA in 620 



infected tissues, which will likely require 3-6 fold higher doses than those usually given to the 621 

patients, which will strongly increase the risks of toxic effects (Poulsen et al., 2020). Given 622 

the variety of side effects of CsA, a careful evaluation of cost/benefit should be done before 623 

considering this molecule in COVID-19 treatment.  Nephrotoxicity is the most common 624 

adverse effect of CsA treatment and is frequently associated with arterial hypertension 625 

(Palestine et al., 1984; Olivari et al., 1989; Meyer-Lehnert et al., 1993). This could be a 626 

problem as many patients with mild or severe forms of COVID-19 have high blood pressure. 627 

In addition, several animal studies have highlighted a vasoconstrictor effect of CsA (Lamb et 628 

al., 1987; Zimmerhackl et al., 1990; Perico et al., 1990). Moreover, many drug including 629 

amphotericin B, aminoglycoside antibiotics and co-trimoxazole are at risk to potentiate the 630 

nephrotoxicity of CsA (Ptachcinski et al., 1986). Indeed there is a long list of drugs that have 631 

proven or suspected to clinically interact with CsA (Aronson, 2016) such as anticonvulsants 632 

(carbamazepine, phenobarbital, phenytoin, primidone) that reduce CsA blood concentration, 633 

antidepressants (fluvoxamine, Nefazodone), antimicrobial and antifungal drugs 634 

(ketoconazole, fluconazole, itraconazole, metronidazole, fluoroquinolones, macrolides, 635 

clarithromycin, erythromycin), antiviral drugs (ritonavir, saquinavir), cardiovascular drugs 636 

(amiodarone, calcium channel blockers, amlodipine, nicardipine, verapamil, carvedilol), 637 

hypoglycemic drugs (glibenclamide, glipizide) among others. This list also includes 638 

chloroquine, and glucocorticoids, which are sometime used in COVID-19 therapy. The 639 

adverse effects of CsA treatment include nephrotoxicity (risk increased by ACE inhibitors 640 

among many other drugs), hypertension, hyperkaliemia (risk increased by potassium salts), 641 

hyperlipidemia, hypomagnesemia, neurotoxicity (risk increased by imipenem), hepatotoxicity 642 

(risk increased by androgens) post transplant diabetes, gingival hyperplasia (risk increased by 643 

nifedipine), hirsutism.  644 



The data in the literature are clear regarding the effects of CsA on in vitro SARS-CoV-2 645 

replication, but these are not the only possible beneficial effects one would expect from CsA 646 

experimental use in treatment of COVID-19 since it can modulate both pro-inflammatory 647 

responses and the RAS pathaway. Moreover, as summarized in Table III, several preliminary 648 

CsA clinical trials performed on COVID-19 patients are encouraging and suggest that this 649 

strategy should be pursued further. In this review we describe at least three possible 650 

mechanisms for which it can be postulated that they are likely to produce a favorable effect on 651 

the outcome of COVID-19 patients: i) an anti-inflammatory effect reducing the production of 652 

pro-inflammatory cytokines; ii) an antiviral effect preventing the formation of the viral RNA 653 

synthesis complex; and, iii) an effect on tissue damage and thrombosis by acting against the 654 

deleterious action of angiotensin II. Even if CsA has many effects that are likely to improve 655 

the outcome of patients infected with SARS-CoV-2, one can of course wonder about the 656 

consequence of using a therapeutic drug that exhibits immunosuppressive effects in severe 657 

forms of COVID-19 because this could reduce the innate and adaptive immune responses of 658 

the patients against the virus. However, there is an increasing panel of available cyclophilin 659 

inhibitors such as Alisporivir/ Debio-025 (Novartis), Debio-064 (Novartis), SDZ NIM811 660 

(Sandoz, Novartis), SCY-635 (Scynexis Inc), STG-175 (S &T Global), CRV431 (Hepion 661 

Pharmaceuticals) or CPI-431-32 (Ciclofilin Pharmaceuticals Inc.), and it is still possible to 662 

replace CsA by one of these compounds or compare these molecules in clinical trials. Finally, 663 

it will be very important to decide when CsA should be admistratred to SARS-CoV-2 infected 664 

patients to obtain the the most beneficial effects. 665 

 666 
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Figures: 1494 

Figure 1: Schematic representation of the subcellular localization of cyclophilins and FKBP 1495 
proteins. The red arrow indicates interaction between Cyclosporin A and Cyclophilins. The 1496 
blue arrow indicates interaction between FK506 and FKBP. CsA: Cyclosporin A; CyPA, 1497 
CyPB, CyPC, CyPD, CyP40 : Cyclophilins A, B, C, D, 40; FKBP: FK506-binding protein; 1498 
Caln: Calcineurin; MPTP: Mitochondrial permeability transition pore ; Ca2+: Calcium.  1499 
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Figure 2: 1510 

Schematic representation of the antiviral effect of CsA treatment on the HIV-1 disease 1511 
progression regarding the clinical trials reported in the literature. The effectiveness and 1512 
beneficial effects of CsA depend on the stage of the disease at which the treatment is given. 1513 
Unintegrated DNA forms of viral genome increased in the CsA treated group compared to 1514 
controls when CsA is given post-primo-infection in association with HAART. AIDS: 1515 
Acquired ImmunoDeficiency Syndrome; HAART: Highly Active Antiretroviral Therapy. 1516 
CsA : Cyclosporine A 1517 
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Figure 3: Microscopic examination of histological section of tissues from patients died of 1527 
COVID-19 after hematoxylin, eosin and saffron staining (the hematoxylin stains cell nuclei 1528 
blue, eosin stains the extracellular matrix and cytoplasm pink, the saffron stain in orange 1529 
conjonctive matrix). A) Vascular rejection is characterized by concentric thikened arterie 1530 
secondary to intimal proliferation and endovasculitis. Original magnification x 150. B) 1531 
concentric thikened arterie secondary to fibro-intinal proliferation. Original magnification x 1532 
200 μm. 1533 
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Figure 4: Microscopic examination of tissues from patients died of COVID-19. A) 1543 
hematoxylin, eosin and saffron staining showing intra-alveolar fibrin. Original magnification 1544 
x 70. B) Inflammatory perivascular lymphocytes T infiltration evidenced by anti-CD3 1545 
monoclonal antibody immunostaining. Original magnification x 170. 1546 
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Figure 5: Schematic representation of the classical of TcR/CD3 induced activation of IL-2 1557 
production. During infection with SARS-CoV-2, the virally-induced cell dysregulation lead to 1558 
the aberrant opening of MPTP inducing mitochondrial release of Ca2+ that triggers an 1559 
abnormal Ca2+/Calmodulin activation of calcineurin and dephosphorylation of the 1560 
cytoplasmic NFAT leading to NFAT nuclear translocation and the synthesis of IL-2 and other 1561 
inflammatory cytokines. Under CsA treatment, the CsA/CyPA complex specifically binds to 1562 
calcineurin and inhibits its phosphatase function. Consequently, the nuclear factor of activated 1563 
T cells (NFAT) remain under its inactive cytoplasmic phosphorylated form. Moereover by 1564 
interacting with CyPD, CsA prevents the opening of MPTP and release of Ca2+ that usually 1565 
lead to cell death. In addition, through binding to CyPA, CsA is expected to upregulate 1566 
interferon that block the virus replication. HLA class II: Human leukocyte antigen class II; 1567 
TcR-CD3 complex: T cell receptor-CD3 complex; PLC: Phospholipase C; IP3: Inositol 1,4,5-1568 
triphosphate; Calm: Calmodulin; Caln: Calcineurin; NFATc-P: Nuclear factor of activated T-1569 
cell cytoplasmic phosporylated form; NFATc: NFAT cytoplasmic dephoryled; PKC: Protein 1570 
kinase C; CsA: Cyclosporin A. 1571 
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Figure 6: Schematic representation of the antiviral properties of CsA. Once the SARS-CoV-2 1577 
genome starts to be transcribed into pp1a et pp1ab, the RNA dependent RNA polymerase 1578 
(Nsp12) should interact with several other viral (Nsp8, Nsp7, Nsp13) and cellular (CypA) 1579 
proteins to construct a replication complex require for the viral replication cycle to be 1580 
completed with the synthesis of the structural proteins S, E, M, and N. This step can be 1581 
inhibited through the interaction between CsA and CypA (see the text for details regarding the 1582 
different steps of the SARS-CoV-2 cycle which can be inhibited by CsA). ACE2: 1583 
angiotensin-converting enzyme 2; CsA: Cyclosporin A; CyPA, CyPB, CyPC, CyP : 1584 
Cyclophilins A, B, C, D; gRNA: genomic RNA; Nsps: nonstructural proteins, ERGIC: 1585 
Endoplasmic reticulum Golgi intermediate compartment. 1586 
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Figure 7: Schematic representation of Ang II/AT1R induced inflammatory pathway with 1594 
cytokines release. During infection with SARS-CoV-2 , the virus binds ACE2 reducing the 1595 
ACE2 transcription and inhibiting the capacity of ACE2 to mediate the cleavage of 1596 
Angiotensin II (Ang II) into Angiotensin 1-7. The accumulation of AngII triggers signals 1597 
through its receptor AT1R inducing ROS production. ROS triggers secretion of CyPA that act 1598 
as a stress factor activating the ERK1/2 kinase and overproduction of ROS through a positive 1599 
feeback loop. ROS-sensitive 3-phosphoinositide-dependent protein kinase (PDK1) activation 1600 
that contributes to phosphorylation and activation of Akt. A parallel pathway involves the 1601 
NOX-dependent generation of ROS that activates the p38 MAP kinase (p38MAPK) which 1602 
recruits MAPKAPK2 leading to AkT phosphorylation on a second amino acid position 1603 
leading to full activation of the p38 MAPK-Akt-complex, the activation of IKKab inducing 1604 
the release of IkB from the IkB-NF-kB complexes, nuclear translocation of NF-kB and the 1605 
production of cytokines including TNF-a and soluble IL-6 receptor (sIL-6R) via disintegrin 1606 
and metalloprotease 17 (ADAM 17) followed by the activation of the IL-6 amplifier (IL-6 1607 
AMP) which, by feedbach regulation, activates both the NF-kB and STAT3 transcription 1608 
factors and the production of IL-6. SARS-CoV-2 itself activates NF-kB via the TLR3 1609 
receptor. AngII: Angiotensin II; AT1R: Angiotensin II type 1 receptor ; ROS: Reactive 1610 
oxygen species; NOX: NADPH oxidase ; IKK: IkB kinase; CyPA: cyclophilin A; TLR3: 1611 
Toll-like receptor 3; NF-kB: nuclear factor kB.  1612 
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