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Abstract 31 

For controlling the rapid spread of this SARS-CoV-2 virus, French Government implemented 32 

various measures including a lockdown. The objective of this paper is to describe the 33 

surveillance system MIDaS and to show how this system has been used for evaluating the 34 

consequences of the French lockdown on the bacterial mix of the AP-HM, as well as the 35 

evolution of antibiotic resistance. We were particulary interested by bacterial agents identified 36 

in respiratory, blood and urine samples during the lockdown period, that is from week 12 (mi-37 

march) to week 35 (end of august) 2020, with the years 2017 to 2019 as control period and we 38 

used the percentage of non-resistant (wild) isolates for each species monitored by the 39 

surveillance system without differentiating the resistance phenotypes. The follow-up of the 40 

laboratory bacterial identifcation activity showed a drop in the moving average of the number 41 

of patients during the lockdown. The relative abundance in respiratory samples for the whole 42 

studied period was higher in 2020 while it decreased for urine samples and was constant for 43 

blood samples. S. epidermidis and C. albicans species increased during  the lockdown, 44 

restoration and post-lockdown periods, conversely E. coli significaly decreased. A significant 45 

increase in the percentage of wild phenotypes during 2020 compared to 2017-2019 is 46 

observed for E. coli, K. pneumoniae, P. mirabilis and P. aeruginosa. The use of the MIDaS 47 

syndromic collection and surveillance system at IHU-MI has thus made it possible to detect 48 

aberrations in the epidemic signal, to observe and analyze unexpected increases or decreased 49 

in observed cases and to implement actions to stop the spread of a pathogen but also to 50 

understand the underlying mechanisms of its transmission. 51 



TEXT 52 

 53 

Introduction  54 

Hospital University Institute Méditerranée Infection (IHU-MI) hosts the clinical 55 

microbiology and virology laboratory for all four public university hospitals of Marseille (AP-56 

HM) that performs the diagnosis of all infectious agents including bacteria, microscopic 57 

fungi, parasites and viruses. Since 2013, it has improved or implemented five syndromic 58 

epidemiological surveillance sub-systems that uses the results of this laboratory, unified in a 59 

single collection and analysis system named MIDaS (for Mediterranée Infection Data 60 

Warehousing and Surveillance). Besides traditional surveillance based on patients’ clinical 61 

diagnoses of notifiable infectious diseases, syndromic surveillance uses data about specimen 62 

received at the laboratory and about tests performed based on prescriptions of clinicians, as 63 

well as other laboratory markers through innovative approaches.  64 

In December 2019, Wuhan in Hubei province became the epicenter of the spread of a 65 

new emerging pathogen called SARS-CoV-2. It spread rapidly to other continents, the 66 

pandemic being declared in March 2020. For controlling the rapid spread of this virus, French 67 

Government implemented various measures: closure of schools, culture centers and 68 

socialization places such as bars and restaurants [1,2] before announcing a total lockdown one 69 

week later, from 16 March 2020 [3] until 11 May 2020 (week 12 to week 19). Several 70 

European, American and Asian countries have made the same choice with a more or less strict 71 

lockdown [4]. Several studies have already assessed the effectiveness and impact of the 72 

diverse responses on various fields: medical, economic or sociological [5-8], but, to our 73 

knowledge, its microbiological impact has not been yet studied.   74 



 The objective of this paper is to describe the surveillance system and to show how this 75 

system has been used for evaluating the consequences of the French lockdown on the 76 

bacterial mix of the AP-HM, as well as the evolution of antibiotic resistance. 77 

 78 

Materials and methods  79 

 80 

MIDaS, an epidemiological hub 81 

The MIDaS system can be considered as a surveillance activity hub. Data collection 82 

coming from the hospital information system is mainly collected and processed for 83 

surveillance purposes in the search of statistical aberrations [9] of activity indicator time 84 

series, i.e a higher than expected number of observed cases. These statistical events are 85 

discussed each week during a staff meeting that is attended by biologists, clinicians, and 86 

epidemiologists, and during which in-silico investigations, notably comparisons and cross-87 

referencing of data, can be used. Further epidemiological investigations and measures can be 88 

initiated if the investigation confirms the alarm and, if required, an epidemiological alert may 89 

be simultaneously transmitted to the health institutions concerned, including the Regional 90 

Health Agency (Agence Régionale de Santé, ARS) or the Infection Control Committee 91 

(Comité de Lutte contre les Infections nosocomiales, CLIN). The surveillance results are also 92 

weekly disseminated through the IHU Méditerranée Infection website, and. As an 93 

surveillance activity hub, this system also suggests the weekly enrichment of our microbial 94 

strain collection (CSUR) [10], and supports the quality control of laboratory activities, in the 95 

search of deviations in laboratory processes. The overall structure of MIDaS is presented in 96 

Figure 1. 97 

 98 

 99 



MIDaS data collection 100 

The main role of MIDaS is to collect from the hospital information system by weekly 101 

extraction-transform-load processes diverse surveillance-related data. The AP-HM consists in 102 

four public university hospitals: Timone (1,307 beds), Conception (767 beds), North Hospital 103 

(793 beds) and South Hospital (421 beds) and has approximately 125,000 admissions and 1 104 

million consultations per year. The clinical microbiology and virology laboratory performs 105 

approximately 8 million tests per year. Tests results as well as patients and specimen 106 

information are collected from the laboratory information system. Other data from hospital 107 

information systems as the hospital medico-economic data (Programme de Médicalisation des 108 

Systèmes d’Information, PMSI) are weekly collected, especially information about patients’ 109 

death in order to study death-associated infections. Finally, data from other automated 110 

systems are also collected, such as spectra files generated by the Matrix Assisted Laser 111 

Desorption Ionization – Time of Flight (MALDI-TOF) mass spectrometry instruments used 112 

for bacterial and fungal routine identification. MIDaS therefore populate a data warehouse 113 

that groups together microbiological analysis results (sample number, requesting unit, sample 114 

date, type of analysis, antibiotic susceptibility test results, antibiotic resistance phenotype) and 115 

patient information (anonymized patient identifier, age, gender, postal code of residence, 116 

anonymized identifier of hospital stay, date of hospitalization, length of stay, death). Six 117 

million of microbiological results are stored in this data warehouse, representing 240,000 118 

antibiotic susceptibility tests, 2,300,000 samples, 850,000 patients and nearly 1 million 119 

MALDI-TOF clinical spectra (more than 3 million for spectra being produced for research 120 

purposes).  121 

 122 

MIDaS domain-specific monitoring systems 123 



Five domain-specific monitoring sub-systems are connected to the data warehouse for 124 

producing fully automated dashboards. Historically, EPIMIC (for EPIdemiological 125 

surveillance and alert based on MICrobiological data) is the first monitoring system that was 126 

implemented, in 2002 in our laboratory to allow monitoring the weekly counts of clinical 127 

specimens sent by clinicians, of diagnosis tests performed and of diagnosis results obtained 128 

[11]. It has been later updated in 2013 for its integration in MIDaS. Since 2013, bacteria have 129 

been more comprehensively monitored by BALYSES (Bacterial real-time Laboratory-based 130 

Surveillance System) while SFY (Surveillance of Fungi and Yeasts) has focused on 131 

microscopic fungi and yeasts and MARSS (Marseille Antibiotic Resistance Surveillance 132 

System) has monitored antibiotic resistance patterns [12]. In addition, MALDI-TOF spectra 133 

have been used as an additional tool to support surveillance and are analyzed by the 134 

SpectraSurv system (for MALDI-TOF based surveillance) [13]. 135 

 136 

Data for the lockdown analysis  137 

In this study, we were particulary interested by bacterial agents identified in 138 

respiratory, blood and urine samples during the lockdown period, that is from week 12 (mi-139 

march) to week 35 (end of august) 2020, with the years 2017 to 2019 as control period.  140 

Hospital activities 141 

The analysis based on BALYSES allowed us to define three periods according to the 142 

evolution of the laboratory activities during 2020: a lockdown phase (weeks 12-19), a 143 

restoration phase (weeks 20-24) and a post-lockdown  phase (weeks 25-35) (figure 2). 144 

Bacterial and fungal community 145 

The bacterial community was studied in terms of species richness and abundance for the 3 146 

most frequent samples: urine, respiratory and blood samples. The specific richness represents 147 



the total number of species present in a sample and relative abundance (or relative frequency) 148 

indicates the frequency of a species. 149 

Evolution of antibiotic resistance 150 

We used the percentage of non-resistant (wild) isolates for each species monitored by the 151 

surveillance system without differentiating the resistance phenotypes, taking in account the 152 

nosocomial or community origin of the isolate.  153 

 154 

Statistical analysis 155 

The log-linear model, and secondly the Fisher and Chi2 tests for point comparisons,  156 

were used to evaluate the evolution of diversity and antimicrobial resistance, with a statistical 157 

significance threshold of 0.05 [14].  158 

 159 

Results 160 

Hospital activities 161 

The follow-up of the laboratory bacterial identifcation activity (Figure 2) showed a 162 

drop in the moving average of the number of patients during the lockdown period from 641.5 163 

patients on March 11 to 412.5 patients on May 13, 2020. After the end of the lockdown, the 164 

activity level gradually returned to the normal, from 412.5 patients on May 13 to 512.5 165 

patients on June 17 then to 611.25 patients on July 15, 2020.  166 

 167 

Bacterial and fungal community 168 

From the weeks 12 to 35 in 2017-2020, a total of 349 bacterial and fungal species 169 

were identified from 30,918 identifications including 24,946 from urine samples (186 distinct 170 

species), 4,555 from respiratory samples (230 distinct species) and 1,417 from blood samples 171 

(111 distinct species). The top 20 species alone represent 87.4% (27,037/30,918) of the total 172 



number of identifications. The relative abundance in respiratory samples for the whole studied 173 

period was higher in 2020 while it decreased for urine samples and was constant for blood 174 

samples (Figure 3A). However, the species richness was constant over time in respiratory and 175 

urine samples but decreased in blood samples (Figure 3B). 176 

 When comparing diversities between 2020 and 2017-2019 for the pooled three kinds 177 

of samples (urine, respiratory and blood samples), we found a significant variation in the 178 

relative frequency of 9 species out of the top-20 (45%) during the lockdown period, of 4 179 

species during the restoration and post-lockdown periods, although not for the same species 180 

(Table 1, Figure 4). Species that significantly decreased during the lockdown are Escherichia 181 

coli (39.3% to 28.6%, p-value < 2.2e-16), Klebsiella oxytoca (1.5% to 0.8%, p-value = 0.02) 182 

and Haemophilus influenzae (1.2% to 0.7%, p-value = 0.02). There is a significant increased 183 

for Candida albicans, Staphylococcus epidermidis, Enterobacter cloacae, Staphylococcus 184 

haemolyticus, Enterobacter aerogenes and Candida glabrata (Table 1). S. epidermidis and C. 185 

albicans species increased during all three time periods, conversely E. coli significaly 186 

decreased. Citrobacter koseri experienced a significant decrease only during the restoration 187 

period and Staphylococcus aureus experienced significant growth during the post-lockdown 188 

(Table 1). 189 

 Diversity in respiratory samples  190 

During the lockdown and restoration periods, 5 species out of the top 20 recorded a 191 

significant variation in their relative frequency, and 1 during the post-lockdown (Table 2A). 192 

E. coli, S. pneumoniae and H. influenzae significatly decreased during the lockdown and 193 

remained stable during the next two phases. C. albicans is the only species that increased 194 

during the three periods. K. pneumoniae decreased during the restoration period whereas 195 

species including E. cloacae and S. agalactia increased.  196 

 Diversity in blood samples  197 



A significant increase in relative frequency is observed for E. faecalis and S. haemolyticus for 198 

blood samples during the lockdown, which is maintained during the post-lockdown only for 199 

S. haemolyticus (Table 2B). No other variation in relative frequency is observed during the 200 

restoration period.  201 

 Diversity in urine samples  202 

E. coli significaly decreased from 46.5% to 38.4% during the lockdown in contrast to C. 203 

albicans (3.0% to 5.1%), E. cloacae (2.3% to 3.5%) and C. glabrata (0.6% to 1.1%) (Table 204 

2C) that significaly increased (Table 2C). During the restoration period, only C. albicans 205 

(2.9% to 4.9%) increased and C. koseri (1.6% to 0.8%) decreased. No significant variation is 206 

observed for the post-lockdown period.  207 

 208 

Evolution of antibiotic resistance 209 

Whathever the origin of the infection, the analysis of the evolution of bacterial 210 

antibiotic resistance showed a significant increase in the percentage of wild phenotypes 211 

during 2020 compared to 2017-2019 for E. coli (45.4% to 48.5%), K. pneumoniae (59.6% to 212 

67.7%), P. mirabilis (56.4% to 64.1%) and P. aeruginosa (56.0% to 64.9%) (Table 3). Other 213 

species out of the top-20 did not record any significant change. The wild percentage for 214 

community infection significantly increased for E. coli and P. aeruginosa whereas it 215 

decreased for K. pneumoniae and P. mirabilis. However, for nosocomial infection, this 216 

percentage significantly decreased for only P. aeruginosa and increased for K. pneumoniae.  217 

However, in regards of the origin of infection (nosocomial or community), the 218 

percentage of wild phenotypes significantly decreased when the origin of infection is 219 

nosocomial and significantly increased when the origin of infection is community for E. 220 

aerogenes, E. faecium, K. oxytoca and M. morganii (Table 3). E. faecalis presented a 221 

decreased percentage for nosocomial infection and E. cloacae an increased percentage for 222 



community infection.  223 

 224 

Discussion  225 

The consequences of COVID-19  on the diversity of non-viral infectious agents and on 226 

the evolution of antibiotic resistance is notable. Infectious agents may be separated into 2 227 

groups according to their behaviour during this first lockdown.  228 

The first group is characterised by a decrease of the species relative frequency during 229 

the whole study period, but with a decrease confirmed only during the lockdown period when 230 

the statistical analysis takes the kind of the sample in account. We have here an example of 231 

Simpson’s paradox [15]. Escherichia coli is characteristic of this first group.  232 

Species of the second group show a significant increase of their relative frequency 233 

whatever the type of sample and the period studied. Candida albicans and glabrata belong to 234 

this group, particularly found in intensive care units, which were heavily impacted during the 235 

SARS-CoV-2 epidemic, possibly explaining their significant increases during the lockdown 236 

[16,17].  237 

The wild phenotype population has also increased in comparison with the previous 3 238 

years for the most identified species in our institute. E. coli and P. aeuruginosa present more 239 

frequently a wild phenotype than usually in the context of community-acquired infection. 240 

However, the susceptibility of E. coli to most antibiotics involved in community-acquired 241 

urinary tract infections tended to decrease before the COVID-19 pandemic [18]. 242 

In France, government responses taken to limit the spread of the virus, such as 243 

lockdown, probably played a role in the evolution of identification of bacteria and fungi [2,3]. 244 

Indeed, it was recommended that individuals should stay at home and contact the emergency 245 

call centre (number 15) only in the event of respiratory distress, to avoid clogging up hospitals 246 

and the spread of the disease [19].  In addition, in order to manage patients with COVID-19, 247 



many hospital departments have been transformed to accommodate these SARS-CoV-2 248 

positive patients, which explains this increase in the number of hospitalisations. Non-249 

emergency hospital activities were suspended. Thus, the number of patients and ordinary 250 

hospitalisation outside of COVID-19 decreased considerably during the first containment, 251 

partly explaining this decrease in some pathogens and the increase in others.  252 

 253 

The use of the MIDaS syndromic collection and surveillance system at IHU-MI has 254 

thus made it possible to detect aberrations in the epidemic signal, to observe and analyze 255 

unexpected increases in observed cases and to implement actions to stop the spread of a 256 

pathogen but also to understand the underlying mechanisms of its transmission.  Syndromic 257 

surveillance is central in the surveillance of infectious agents and particularly adapted to the 258 

unpredictability of their epidemiological trends and to new and re-emerging pathogens. 259 

 260 

  261 

References :  262 

1. Vanhems P. SARS-CoV2 infection and primary school closure. Euro Surveill. 263 

2020;25(15):2000617. Doi:10.2807/1560-7917.ES.2020.25.15.2000617 264 

2. Moatti JP. The French response to COVID-19: intrinsic difficulties at the interface of 265 

science, public health, and policy. Lancet Public Health. 2020;5(5):e255. 266 

Doi:10.1016/S2468-2667(20)30087-6 267 

3. Décret n°2020-260  du 16 mars 2020 portant réglementation des déplacements dans le 268 

cadre de la lutte contre la propagation du virus COVID-19,  269 

https ://www.legifrance.gouv.fr/affichTexte.do ?cidTexte=JORFTEXT000041728476 270 

https://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000041728476


4. Thomas H, Boby T, Angrist N, Cameron-Blake E, Hallas L, Kira B et al. Variation in 271 

Government Responses to COVID19. Version 9.0. Blavatnik School of Government 272 

Working Paper. 10 December 2020. Available: www.bsg.ox.ac.uk/covidtracker 273 

5. The Lancet Gastroenterology Hepatology. Drinking alone: COVID-19, lockdown, and 274 

alcohol-related harm. Lancet Gastroenterol Hepatol. 2020;5(7):625. 275 

6. Pierce M, Hope H, Ford T, et al. Mental health before and during the COVID-19 276 

pandemic: a longitudinal probability sample survey of the UK population. Lancet 277 

Psychiatry. 2020;7(10):883-892. 278 

7. Palazzolo C, Maffongelli G, D'Abramo A, et al. Legionella pneumonia: increased risk 279 

after COVID-19 lockdown? Italy, May to June 2020. Euro Surveill. 280 

2020;25(30):2001372. 281 

8. Faber M, Ghisletta A, Schmidheiny K. A lockdown index to assess the economic 282 

impact of the coronavirus. Swiss J Econ Stat. 2020;156(1):11. doi:10.1186/s41937-283 

020-00056-8 284 

9. Stroup DF, Williamson GD, Herndon JL, Karon JM. Detection of aberrations in the 285 

occurrence of notifiable diseases surveillance data. Stat Med. 1989;8(3):323-332. 286 

10. Lagier JC, Khelaifia S, Alou MT, et al. Culture of previously uncultured members of 287 

the human gut microbiota by culturomics. Nat Microbiol. 2016;1:16203. Published 288 

2016 Nov 7. 289 

11. Colson P, Rolain JM, Abat C, Charrel R, Fournier PE, Raoult D. EPIMIC: A Simple 290 

Homemade Computer Program for Real-Time EPIdemiological Surveillance and Alert 291 

Based on MICrobiological Data. PLoS One. 2015;10(12):e0144178. 292 

12. Abat C, Chaudet H, Colson P, Rolain JM, Raoult D. Real-Time Microbiology 293 

Laboratory Surveillance System to Detect Abnormal Events and Emerging Infections, 294 

Marseille, France. Emerg Infect Dis. 2015;21(8):1302-1310. 295 

http://www.bsg.ox.ac.uk/covidtracker


13. Giraud-Gatineau A, Texier G, Garnotel E, Raoult D, Chaudet H. Insights Into 296 

Subspecies Discrimination Potentiality From Bacteria MALDI-TOF Mass Spectra by 297 

Using Data Mining and Diversity Studies. Front Microbiol. 2020;11:1931. Published 298 

2020 Aug 13. 299 

14. R Core Team. A language and environment for statistical computing. R   Foundation 300 

for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ 2019. 301 

15. Chu KH, Brown NJ, Pelecanos A, Brown AF. Simpson's paradox: A statistician's case 302 

study. Emerg Med Australas. 2018;30(3):431-433. doi:10.1111/1742-6723.12943 303 

16. Baldesi O, Bailly S, Ruckly S, et al. ICU-acquired candidaemia in France: 304 

Epidemiology and temporal trends, 2004-2013 - A study from the REA-RAISIN 305 

network. J Infect. 2017;75(1):59-67. doi:10.1016/j.jinf.2017.03.011 306 

17. De Pascale G, Tumbarello M. Fungal infections in the ICU: advances in treatment and 307 

diagnosis. Curr Opin Crit Care. 2015;21(5):421-429. 308 

doi:10.1097/MCC.0000000000000230 309 

18. Kim YJ, Lee JM, Cho J, Lee J. Change in the Annual Antibiotic Susceptibility 310 

of Escherichia coli in Community-Onset Urinary Tract Infection between 2008 and 311 

2017 in a Tertiary Care Hospital in Korea. J Korean Med Sci. 2019;34(34):e228. 312 

Published 2019 Sep 2. doi:10.3346/jkms.2019.34.e228 313 

19. Préparation a la phase épidémique de COVID-19. Ministère des Solidarités et de la 314 

Santé, March 16, 2020. https://solidarites-sante.gouv.fr/IMG/pdf/guide-covid-19-315 

phase-epidemique-v15-16032020.pdf (accessed March 27, 2020).   316 

  317 



Acknowlegments 318 

This manuscript has been edited by a native English speaker. 319 

 320 

Figures 321 

Figure 1 – Structure of Méditerranée Infection Data warehousing and Surveillance (MIDaS) 322 

Figure 2 – Follow-up of patients with at least one bacterial identification at IHU 323 

Méditerranée Infection from January to September, 2020.  324 

Figure 3 – Evolution of the relative abundance (A) and the specific richness (B) from weeks 325 

12 to 35, 2017 to 2020 at Assistance Publique – Hôpitaux de Marseille, Marseille, France. 326 

Figure 4 - Weekly incidence of the 5 most identified species in our institute and SARS-CoV-327 

2 from 2018 to 2020, Marseille, France. 328 
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