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Background. A new severe acute respiratory syndrome coronavirus (SARS-CoV-2) 

causing coronavirus diseases 2019 (COVID-19), which emerged in Wuhan, China in 

December 2019, has spread worldwide. Currently, there is no antiviral treatment 

recommended against SARS-CoV-2. Identifying effective low cost antiviral drugs with 

limited side effects affordable immediately is urgently needed. Methylene blue, a synthesized 

thiazine dye, may be a potential antiviral drug. 

Methods. Antiviral activity of methylene blue used alone or in combination with several 

antimalarial drug or remdesivir were assessed against infected Vero E6 cells with two 

clinically isolated SARS-CoV-2 strains (IHUMI-3 and IHUMI-6). Effects both on viral entry 

in the cell and on post-entry were also investigated. After 48h post-infection, the viral 

replication was estimated by RT-PCR. 

Results. The median effective concentration (EC50) and 90% effective concentration 

(EC90) of methylene blue against IHUMI-3 were 0.41 ± 0.34 µM and 1.85 ± 1.41 µM, 

respectively; and 1.06 ± 0.46 µM and 5.68 ± 1.83 µM against IHUMI-6. Methylene blue 

interacted at both entry and post-entry stages of SARS-CoV-2 infection in Vero E6 cells as 

retrieved for hydroxychloroquine. The effects of methylene blue were additive with those of 

quinine, mefloquine and pyronaridine. The combinations of methylene blue with chloroquine, 

hydroxychloroquine, desethylamodiaquine, piperaquine, lumefantrine, ferroquine, 

dihydroartemisinin and remdesivir were antagonist. 

Conclusions. These results support in vivo evaluation in animal experimental models to 

confirm methylene blue antiviral effects on SARS-CoV-2. 
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In December 2019, a new severe acute respiratory syndrome coronavirus (SARS-CoV-2) 

causing coronavirus diseases 2019 (COVID-19) emerged in Wuhan, China [1]. Currently, 

there is no antiviral treatment recommended against SARS-CoV-2. Identifying effective low 

cost antiviral drugs with limited side effects affordable immediately is urgently needed, 

especially for emerging countries. An efficient approach to drug discovery is drug 

repurposing that consists in evaluating whether existing approved drugs can be efficient 

against SARS-CoV-2. Several compounds have been already evaluated at least in vitro 

including antimalarial drugs (chloroquine, mefloquine, quinine, pyronaridine, piperaquine, 

lumefantrine, artemisinin) [2-5], antibiotics (azithromycin, doxycycline) [6,7], antiparasitic 

drugs (ivermectin) [8] or antiviral agents (remdesivir, ritonavir, lopinavir, favipiravir) 

[4,5,9,10]. 

Methylene blue, a synthesized thiazine dye, is able to intercalate into viral nucleic acid 

when illuminated with visible light and can inactivate Zika, yellow fever, dengue, 

chikungunya, Ebola viruses and Middle East respiratory syndrome coronavirus in plasma [11-

14]. Methylene blue was also shown to exert in vitro and in vivo antimicrobial effects without 

photoactivation, and more particularly against Plasmodium spp. [15-19]. Methylene blue may 

have a role in the treatment of COVID-19 [20]. SARS-CoV-2 was inactivated by 

photoactivation [21,22]. Moreover, methylene blue was found to inhibit SARS-CoV-2 in vitro 

at concentrations achievable after oral or intravenous administration [21,23]. 

The aim of this study was to confirm the antiviral activity of methylene blue against 

SARS-CoV-2, to investigate its effects on viral entry in the cell and on post-entry and its 

activity in combination with other potential drugs. 

 

MATERIAL AND METHODS 

Drugs, virus and cells 



Methylene blue (methylthioninium chloride; Proveblue®) was provided by Provepharm SAS 

(Marseille, France). Chloroquine diphosphate (Sigma Aldrich, St Quentin Fallavier, France) 

and remdesivir (Apollo Scientific, Manchester, UK) were used as comparators. Stock 

solutions of methylene blue and hydroxychloroquine were prepared in water and remdesivir 

in DMSO/water 10%. All the stock solutions were then diluted in Minimum Essential Media 

(MEM, Gibco, ThermoFischer) in order to have 7 final concentrations ranging from 0.1 µM 

to 100 µM. Two clinically-isolated SARS-CoV-2 strains (IHUMI-3 and IHUMI-6) [24] were 

maintained in production in Vero E6 cells (American type culture collection ATCC® CRL-

1586™) in MEM with 4% of fetal bovine serum and 1% of glutamine (complete medium). 

 

Antiviral activity assay 

Briefly, 96-well plates were prepared with 5.105 cells/mL of Vero E6 (200µL per well), as 

previously described [6]. Methylene blue, hydroxychloroquine or remdesivir concentrations 

were added 4 h before infection. Vero E6 Cells were infected with IHUMI-3 or IHUMI-6 

strains at an MOI of 0.01. After 48h post-infection, the replication was estimated by RT-PCR 

using the Superscrit III platinum one step with Rox kit (Invitrogene) after extraction with the 

BIoExtract SuperBall kit (Biosellal, Dardilly, France). The primers used were previously 

described [25]. EC50 (median effective concentration) and EC90 (90% effective concentration) 

were calculated with the inhibitory sigmoid Emax model, which estimated the EC50 and EC90 

through nonlinear regression by using a standard function of the R software (ICEstimator 

version 1.2). EC50 and EC90 values resulted in the mean of 6 to 12 independent 

experimentations. 

 

Determination of the inhibition stage 



Determining in vitro at what stage methylene blue, hydroxychloroquine or remdesivir is acting 

against the SARS-CoV-2 IHUMI-003 strain was assessed at a concentration of 10 µM. For 

“full-time treatment”, Vero E6 cells were pre-treated with one of the three drugs for 4 h and 

virus was then added for 48 h. For “entry” treatment, the drug was added to Vero E6 cells 4 h 

before viral infection and the virus-drug mixture was replaced with fresh medium after 2 h 

post-infection and was maintained for 46 h. For “post-entry” treatment, the drug was added 

after 2 h post-infection and was maintained for 46 h. The percentage of inhibition of SARS-

CoV-2 replication by 10 µM of drug was estimated for each drug concentration as following: 

(mean CTdrug concentration − mean CTcontrol 0%)/(mean CTcontrol 100% − mean CTcontrol 0%) × 100. The 

result was the mean of 6 to 9 independent experiments. 

 

RESULTS 

The antiviral activity of methylene blue against the clinically-isolated SARS-CoV-2 strains 

IHUMI-3 and IHUMI-6 was concentration-dependent (Figure 1). The median effective 

concentration (EC50) and 90% effective concentration (EC90) of methylene blue against 

IHUMI-3 were 0.41 ± 0.34 µM and 1.85 ± 1.41 µM (n=12), respectively; and 1.06 ± 0.46 µM 

and 5.68 ± 1.83 against IHUMI-6 (n=6). The difference between EC50 against the two was 

significant (p = 0.015, Welch two sample t-test). 

In comparison, EC50 and EC90 of remdesivir against IHUMI-6 were 1.00 ± 0.41 µM and 

3.2 ± 2.9 µM, respectively (n=6). There was no significant difference between methylene blue 

and remdesivir EC50 or EC90 (p = 0.786 and p = 0.113, Welch two sample t-test). 

EC50 and EC90 of hydroxychloroquine against IHUMI-6 were 6.25 ± 2.20 µM and 12.32 ± 

2.82 µM, respectively (n=6). Methylene blue was significantly more effective than 

hydroxychloroquine against IHUMI-6 (p = 0.005 for EC50 and p = 0.003 for EC90; Welch two 

sample t-test). 



Methylene blue interacted at both entry and post-entry stages of SARS-CoV-2 infection in 

Vero E6 cells, as hydroxychloroquine did (Figure 2). Contrariwise, remdesivir, which is an 

antiviral drug, interacted only at post-entry stage. 

The effects of methylene blue were additive with those of quinine (Figure 3), mefloquine 

(Figure 4) and pyronaridine (Figure 5). The combinations of methylene blue with chloroquine 

(Figure 6), hydroxychloroquine, desethylamodiaquine, piperaquine, lumefantrine, ferroquine, 

dihydroartemisinin and remdesivir (data not shown) were antagonist. 

 

DISCUSSION 

Our data confirmed the in vitro activity of methylene blue at very low-micromolar range with 

EC50 between 0.41 and 1.06  and EC90 between 1.85 ± 1.41 µM and 5.68 ± 1.83 µM against 

two strains of SARS-Cov 2 IHUMI-3 and IHUMI-6 [23,26,27]. Methylene blue was effective 

as antiviral remdesivir against IHUMI-6 strain and more effective than hydroxychloroquine in 

vitro. These effective concentrations are compatible with blood concentrations after usual oral 

intake or intravenous injection of methylene blue. An oral uptake of 325 mg of methylene 

blue led to a Cmax (maximum blood concentration) value of 0.97 µg/mL (around 3 µM) [28] 

and a dose of 2 mg/kg intravenous showed a Cmax of 2.917 µg/mL (around 10 µM) [29]. In 

another study, blood concentrations of 6-7 µM were obtained after three oral daily doses of 69 

mg (207 mg/day) [30]. Methylene blue EC50 and EC90 are consistent with concentrations 

observed in human blood. Moreover, methylene blue is accumulated in lungs tissue. Around 3 

to 5% of methylene blue per g of lung was found after intravenous methylene blue [31]. 

Methylene blue could be association with antimalarial drugs such as quinine, mefloquine 

or pyronaridine to improve its antiviral activity. Mefloquine concentrations are 10 times 

higher in the lung than in the blood (a concentration which can go up to 180 mg/kg in the 

lung) [32]. A single oral dose of 2 mg (10 mg/kg) of pyronaridine in rats led to a blood Cmax 



of 223 ng/mL and a lung Cmax of 36.4 µg/g of tissue (165 more concentrated) [33]. In rat, after 

intravenous dose of 10 mg/kg of quinine, the observed concentration lung/blood ratio was at 

246 [34]. These three drugs accumulate in lungs and could be potent partners for methylene 

blue for COVD-19 treatment. 

Methylene blue interacted at both entry and post-entry stages of SARS-CoV-2 infection in 

Vero E6 cells. The inhibition of the viral entry is consistent with the results interaction 

between the spike protein (S) and the angiotensin converting enzyme 2 (ACE2) via its 

receptor binding domain (RBD), binding required for SARS-CoV-2 cell entry. Methylene 

blue inhibits the binding of SARS-CoV-2 spike S protein to ACE2 at micro-molar range [27]. 

Moreover, the inhibition of both entry and viral replication after SARS-CoV-2 entry is 

consistent with the results from combinatorial computational approaches. Docking analysis 

showed that methylene blue could bind the spike protein S of SARS-CoV-2, but lesser than 

hydroxychloroquine, and the main protease (M), but lesser than remdesivir [35]. This protein, 

also called 3C-like protease, is essential to conduct the replication cycle of SARS-CoV-2 by 

leading to the formation of non-structural proteins (NSPs) [36]. 

Besides its antiviral activity, methylene blue is reduced into leukomethylene blue which 

reduces the methemoglobin to hemoglobin. Methylene blue could reduce hypoxia, one of the 

main compications in COVID-19 patients, by decreasing methemoglobin. Moreover, 

methylene blue decreases inflammation and oxidative stress [37,38]. Pro-inflammatory 

cytokines and nitric oxide were considerably increased in the cytokine storm due to COVID-

19 [39]. 

These results support in vivo evaluation in animal experimental models to confirm methylene 

blue antiviral effects on SARS-CoV-2. The potential interest of methylene blue to treat 

COVID-19 needs to be confirmed by prospective comparative clinical studies. Methylene 



blue has been assessed in combination with vitamin C and N-acetyl cysteine in severe 

COVID-19 [40,41]. 
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Figure 1. Anti-SARS-CoV-2 activity of methylene blue in % of antiviral inhibition on 

IHUMI-3 (mean of 12 independent experiments) and IHUMI-6 (mean of 6 independent 

experiments) clinically-isolated strains (error bar represents standard deviation) 

 

Figure 2. Antiviral activities of methylene blue, hydroxychloroquine and remdesivir at 10 µM 

against the SARS-CoV-2 IHUMI-006 strain in vitro. For ‘full-time’ treatment, Vero E6 cells 

were pre-treated with one of the three drugs for 4h and virus was then added for 48h. For 

‘entry’ treatment, the drug was added to Vero E6 cells 4h before viral infection and virus-drug 

mixture was replaced with fresh medium after 2h post-infection and maintained for 46h. For 

‘post-entry’ treatment, the drug was added after 2h post-infection and maintained for 46h. 

Error bars represent standard deviation of 6 to 9 independent experiments 

 

Figure 3. Antiviral activities of methylene blue (MB) at 0.1 and 0.5 µM in combination with 

quinine (QN) at 1, 5, 10 and 25 µM (error bars represent standard deviation of 13 independent 

experiments) 

 

Figure 4. Antiviral activities of methylene blue (MB) at 0.1 and 0.5 µM in combination with 

mefloquine (MQ) at 0.5, 1, 5 and 10 µM (error bars represent standard deviation of 13 

independent experiments) 

 

Figure 5. Antiviral activities of methylene blue (MB) at 0.1 and 0.5 µM in combination with 

pyronaridine (PND) at 0.1, 0.5, 1 and 5 µM (error bars represent standard deviation of 9 

independent experiments) 

 



Figure 6. Antiviral activities of methylene blue (MB) at 0.1 and 0.5 µM in combination with 

chloroquine (CQ) at 0.5, 1, 5 and 10 µM (error bars represent standard deviation of 9 

independent experiments) 

  



Figure 1. Anti-SARS-CoV-2 activity of methylene blue in % of antiviral inhibition on 

IHUMI-3 (mean of 12 independent experiments) and IHUMI-6 (mean of 6 independent 

experiments) clinically-isolated strains (error bar represents standard deviation) 

 

 

  



Figure 2. Antiviral activities of methylene blue, hydroxychloroquine and remdesivir at 10 µM 

against the SARS-CoV-2 IHUMI-006 strain in vitro. For ‘full-time’ treatment, Vero E6 cells 

were pre-treated with one of the three drugs for 4h and virus was then added for 48h. For 

‘entry’ treatment, the drug was added to Vero E6 cells 4h before viral infection and virus-drug 

mixture was replaced with fresh medium after 2h post-infection and maintained for 46h. For 

‘post-entry’ treatment, the drug was added after 2h post-infection and maintained for 46h. 

Error bars represent standard deviation of 6 to 9 independent experiments 

 

 

  



Figure 3. Antiviral activities of methylene blue (MB) at 0.1 and 0.5 µM in combination with 

quinine (QN) at 1, 5, 10 and 25 µM (error bars represent standard deviation of 13 independent 

experiments) 

 

 

  



Figure 4. Antiviral activities of methylene blue (MB) at 0.1 and 0.5 µM in combination with 

mefloquine (MQ) at 0.5, 1, 5 and 10 µM (error bars represent standard deviation of 13 

independent experiments) 

 

 

  



Figure 5. Antiviral activities of methylene blue (MB) at 0.1 and 0.5 µM in combination with 

pyronaridine (PND) at 0.1, 0.5, 1 and 5 µM (error bars represent standard deviation of 9 

independent experiments) 

 

 

  



Figure 6. Antiviral activities of methylene blue (MB) at 0.1 and 0.5 µM in combination with 

chloroquine (CQ) at 0.5, 1, 5 and 10 µM (error bars represent standard deviation of 9 

independent experiments) 

 

 


