1	TITLE PAGE			
2				
3	Full-length title:			
4	Implementation of an in-house real-time reverse transcription-PCR assay to detect the			
5	emerging SARS-CoV-2 N501Y variants			
6				
7	Short title (for the running head): qPCR for SARS-CoV-2 N501Y variants			
8				
9	Author list: Marielle BEDOTTO ¹ , Pierre-Edouard FOURNIER ^{1,2} , Linda			
10	HOUHAMDI ^{1,2} , Philippe COLSON ^{1,2} , Didier RAOULT ^{1,2} *			
11	Affiliations: ¹ IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille,			
12	France; ² Aix-Marseille Univ., Institut de Recherche pour le Développement (IRD),			
13	Assistance Publique - Hôpitaux de Marseille (AP-HM), MEPHI, 27 boulevard Jean Moulin,			
14	13005 Marseille, France			
15				
16	* Corresponding author: Didier RAOULT, IHU - Méditerranée Infection, 19-21 boulevard			
17	Jean Moulin, 13005 Marseille, France. Tel.: +33 413 732 401, Fax: +33 413 732 402; email:			
18	didier.raoult@gmail.com			
19				
20	Key words (5): SARS-CoV-2; Covid-19; N501Y variants; qPCR; diagnosis			
21	Word counts: abstract: 176; text: 497			
22	Figure: 0; Table: 1; References: 6.			
23				

24	ABSTRACT
25	
26	The SARS-CoV-2 pandemic has been associated with the emergence of several variants with
27	a mutated spike glycoprotein that are of substantial concern regarding their transmissibility
28	and ability to evade immune responses. This warrants implementing strategies for their
29	detection and surveillance. We have set up an in-house one-step real-time reverse
30	transcription-PCR (qPCR) assay that specifically detects SARS-CoV-2 spike N501Y variants.
31	Our assay was positive for all 6 patients found spike N501Y-positive by genome sequencing.
32	Ten cDNA samples for each of the 10 Marseille variants identified by genome sequencing
33	and three nasopharyngeal samples of a spike N501Y-negative variant (Marseille-4) that
34	predominates locally tested negative. All negative controls among which 5 SARS-CoV-2-
35	negative nasopharyngeal samples tested negative. First use in the setting of diagnosis on 51
36	nasopharyngeal samples from SARS-CoV-2-positive but Marseille-4-negative patients
37	showed positivity in 5 cases further confirmed by sequencing as from spike N501Y variant-
38	infected patients. Thus, our in-house qPCR system was found reliable for the detection of the
39	N501Y substitution and allowed estimating preliminarily that spike N501Y variant prevalence
40	was 4% among SARS-CoV-2 diagnoses since January 2020.
41	

43	TEXT		
44			
45	The SARS-CoV-2 pandemic has been associated with the occurrence of several viral		
46	variants with a mutated spike glycoprotein (S). Those currently of greatest concern carry		
47	N501Y substitution within the spike (S) receptor binding domain (RBD). Indeed, they have		
48	become predominant in England (20I/501Y.V1) [1] and were detected in South Africa		
49	(20H/501Y.V2) [2] and Brazil [3]. The 20I/501Y.V1 variant has started to spread worldwide		
50	including in France [4]. It has been reported as 50-74% more transmissible than preexisting		
51	strains, suspected to evade anti-spike antibodies [1], and it caused a reinfection [5]. Its real-		
52	time detection is critical to manage patients appropriately, monitor and assess its		
53	epidemiological and clinical features, and survey cases of immune escape post-infection or		
54	vaccination. An alternative comprehensive detection strategy is warranted considering the		
55	very large number of SARS-CoV-2 cases.		
56	We have implemented an in-house one-step real-time reverse transcription-PCR		
57	(qPCR) assay that specifically detects SARS-CoV-2 N501Y variants by targeting nucleotide		
58	position 23,063 within S gene where A>U leads to N501Y. SARS-CoV-2 genomes from the		
59	GISAID database with or without N501Y were used to design primers and a hydrolysis probe.		
60	The sequences of these latter and the qPCR conditions are shown in Table 1. Our N501Y-		
61	specific assay was positive for all 6 patients identified as 20I/501Y.V1-positive by genome		
62	sequencing and for all 3 additional contact patients for whom sequences were not obtained		
63	due to low viral load (Ct of qPCR diagnosis test= 32.0-34.0) leading to no amplification by		
64	two conventional PCR. Ten cDNA samples, one for each of the 10 Marseille variants [6]		
65	identified by genome sequencing, and three additional nasopharyngeal (NP) samples of the		
66	Marseille-4 variant that predominates locally (~two-thirds of diagnoses) tested negative. All		
67	negative controls (5 SARS-CoV-2-negative NP samples and 20 RNA extract-free qPCR		

68	mixes) tested negative. The first use for diagnosis purpose conducted on 51 NP samples from		
69	SARS-CoV-2 positive (Ct= 10.2-30.8) but Marseille-4-negative patients showed positivity for		
70	5 samples, which were confirmed by sequencing as from N501Y variant-infected patients.		
71	Our in-house qPCR system was found reliable to detect specifically the N501Y		
72	substitution and preliminarily allowed estimating 20I/501Y.V1 variant prevalence to 4%		
73	among our current SARS-CoV-2 diagnoses since January. This assay showed better		
74	sensitivity than conventional PCR and should be able to detect different N501Y variants. A		
75	commercialized RT-PCR diagnosis assay (TaqPath RT-QPCR test) allows the indirect		
76	identification of the 20I/501Y.V1 variant by detecting its ORF1a and N genes but not its S		
77	gene due to a deletion at positions 21,766-21,772 [4]. However this deletion is also present in		
78	strains devoid of the N501Y substitution and was reported in 0.6% of recent SARS-CoV-2		
79	diagnoses in France [4]. Moreover, it is absent from the South African and Brazilian N501Y		
80	variants, which prevents their identification. Finally, our in-house qPCR test can be widely		
81	and easily deployed in laboratories as it runs on any open qPCR microplate platform, does not		
82	require technical workers' training, and is as cheap as other in-house qPCR assays. Such		
83	approach should allow adapting continuously diagnosis strategies for new SARS-CoV-2		
84	variants.		
85			
86			
87	Author contributions		
88	Conceived and designed the study: PC, DR. Contributed materials/analysis tools: MB, PEF,		
0.0			

89 LH, PC. Analyzed the data: all authors. Wrote the paper: PC, DR.

90

91 Acknowledgments -Funding

92	This work was supported by the French Government under the "Investments for the Future"		
93	program managed by the National Agency for Research (ANR), Méditerranée-Infection 10-		
94	IAHU-03 and was also supported by Région Provence Alpes Côte d'Azur and European		
95	funding FEDER PRIMMI (Fonds Européen de Développement Régional-Plateformes de		
96	Recherche et d'Innovation Mutualisées Méditerranée Infection), FEDER PA 0000320		
97	PRIMMI.		
98			
99	Conflicts of interest		
100	The authors declare that they have no known competing financial interests or personal		
101	relationships that could have appeared to influence the work reported in this paper. Fundin		
102	02 sources had no role in the design and conduct of the study; collection, management, analysi		
103	and interpretation of the data; and preparation, review, or approval of the manuscript.		
104			
105	Ethics		
106	This study has been approved by the ethics committee of the University Hospital Institute		
107	Méditerranée Infection, Marseille, France, with the registration number 2020-029.		
108			
109	References		
110	[1] K. Leung, M.H.Shum, G.M.Leung, T.T.Lam, J.T.Wu. Early transmissibility assessment of		
111	the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November		
112	2020, Euro. Surveill 26 (2021).		
113	[2] H. Tegally, E. Wilkinson, M. Giovanetti, A. Iranzadeh, V. Fonseca, J. Giandhari, et al.		
114	Emergence and rapid spread of a new severe acute respiratory syndrome-related		
115	coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa.		
116	medRxiv preprint (2020) doi: https://doi.org/10.1101/2020.12.21.20248640.		

- 117 [3] N.R. Faria, I.M. Claro, D. Candido, L.A. Moyses Franco, P.S. Andrade, T.M. Coletti, et
- al. Genomic characterisation of an emergent SARS-CoV-2 lineage in Manaus: preliminary
- 119 findings, Virological.org (2021) https://virological.org/t/genomic-characterisation-of-an-
- 120 emergent-sars-cov-2-lineage-in-manaus-preliminary-findings/586.
- 121 [4] A. Bal, G. Destras, A. Gaymard, K. Stefic, J. Marlet, S.A. Eymieux, et al. Two-step
- strategy for the identification of SARS-CoV-2 variant of concern 202012/01 and other
- variants with spike deletion H69-V70, France, August to December 2020, medRxiv
- 124 preprint. doi: https://doi.org/10.1101/2020.11.10.20228528.
- 125 [5] D. Harrington, B. Kele, S. Pereira, X. Couto-Parada, A. Riddell, S. Forbes, et al.
- 126 Confirmed reinfection with SARS-CoV-2 variant VOC-202012/01, Clin. Infect. Dis.
- 127 (2021) ciab014. doi: 10.1093/cid/ciab014. Online ahead of print.
- 128 [6] P. Colson, A. Levasseur, J. Delerce, H. Chaudet, V. Bossi, M. Ben Kheder, et al. Dramatic
- 129 increase in the SARS-CoV-2 mutation rate and low mortality rate during the second
- 130 epidemic in summer in Marseille. IHU preprin (2020) doi: https://doi.org/10.35088/68c3-
- 131 ew82.
- 132
- 133
- 134

TABLE

Table 1. Primers, probe and qPCR conditions

	Name	Sequence (5'-3')	Positions *			
	Primers:					
	Pri_IHU_N501Y_F1	ATCAGGCCGGTAGCACAC	22,980-22,997			
	Pri_IHU_N501Y_R1	AAACAGTTGCTGGTGCATGT	23,135-23,116			
	Probe (6FAM-labelled):					
	Pro_IHU_C_GB_1_MBP	CCACT <u>T</u> ATGGTGTTGGTTACCAA	23,058-23,080			
138						
139	* in reference to SARS-CoV-2 genome GenBank Accession no. NC_045512.2 (Wuhan-Hu-1					
140	isolate). The nucleotide carrying the mutation is covered by the probe and underlined.					
141	The qPCR was performed by adding 5 μ L of extracted viral RNA to 15 μ L of reaction					
142	mixture containing 5 μ L of 4X TaqMan Fast Virus 1-Step Master Mix (Thermo Fisher					
143	Scientific, Grand Island, NY, USA), 0.5 μ L of forward primer (10 pmol/ μ L), 0.5 μ L of					
144	reverse primer (10 pmol/ μ L), 0.4 μ L of probe (10 pmol/ μ L), and 8.6 μ L of water. PCR					
1.4.5						
145	conditions are as follows: reverse transcription at 50°C for 10 min, then a hold at 95°C for 20					
140						
146	sec followed by 40 cycles comprising a step at 95°C for 15 sec and a step at 60°C for 60 sec.					
147						
147	This qPCR was run on a LC480 thermocycler (Roche Diagnostics, Mannheim, Germany).					
1.40						
148						