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Abstract 15 

Human coronaviruses SARS-CoV-2 appeared at the end of 2019 and led to a pandemic with 16 

high morbidity and mortality. As there are currently no effective drugs targeting this virus, 17 

drug repurposing represents a short-term strategy to treat millions of infected patients at low 18 

costs. Hydroxychloroquine showed an antiviral effect in vitro. In vivo it also showed efficacy, 19 

especially when combined with azithromycin in a preliminary clinical trial. Here we 20 

demonstrate that the combination of hydroxychloroquine and azithromycin has a synergistic 21 

effect in vitro on SARS-CoV-2 at concentrations compatible with that obtained in Human 22 

lung. 23 

 24 

 25 

 26 

  27 



Background 28 

Since the end of 2019, the world has encountered pandemic conditions attributable to a novel 29 

Coronavirus SARS-CoV 2 (1-3). This is the 7
th

 Coronavirus identified to infect the human 30 

population (1;4;5) and the first one that had pandemic potential in non-immune populations in 31 

the 21
st
 century (6). Finding therapeutics is thus crucial, and it is proposed to do so by 32 

repurposing existing drugs (7-9). This strategy presents the advantages that safety profiles of 33 

such drugs are known and that they could be easily produced at relatively low cost, thus being 34 

quicker to deploy than new drugs or a vaccine. Chloroquine, a decades-old antimalarial agent, 35 

an analog of quinine, was known to inhibit the acidification of intracellular compartments 36 

(10) and has shown in vitro and in vivo (mice models) activity against different subtypes of 37 

Coronaviruses: SARS-CoV-1, MERS-CoV, HCoV-229E and HCoV-OC43 (11-16). In 2004 it 38 

was tested in vitro against SARS-CoV 1 (17) and caused a 99% reduction of viral replication 39 

after 3 days at 16 μM. Moreover, tests in vitro have shown inhibition of viral replication on 40 

SARS-CoV 2 detected by PCR and by CCK-8 assay (18). Hydroxychloroquine 41 

(hydroxychloroquine sulfate; 7-Chloro-4-[4-(N-ethyl-N-b-hydroxyethylamino)-1-42 

methylbutylamino]quinoline sulfate) has shown activity against SARS-CoV2 in vitro and 43 

exhibited a less toxic profile (19). This drug is well known and currently used mostly to treat 44 

autoimmune diseases and also by our team to treat Q fever disease (20;21) and Whipple’s 45 

disease (22;23). In those clinical contexts, concentrations obtained in serum are close to 0.4-1 46 

µg/mL at the dose of 600 mg per day over several months (24). Clinical tests of chloroquine 47 

and hydroxychloroquine to treat COVID-19 are underway in China (25), with such trials 48 

using hydroxychloroquine in progress in the US (ClinicalTrials.gov Identifier: 49 

NCT04307693) and in Europe with the Discovery Trial.  In this drug repurposing effort, 50 

antibacterial components have also been tested. Teicoplanin, a glycopeptide, was 51 

demonstrated in vitro to inhibit cellular penetration of Ebola virus (26) and SARS-CoV 2 52 



(27). Azithromycin (azithromycin dihydrate), a macrolide, N-Methyl-11-aza-10-deoxo-10-53 

dihydroerythromycin A, has shown antiviral activity against Zika (28-30) . Azithromycin is a 54 

well-known and safe drug, widely prescribed in the US, for example, with 12 million 55 

treatment courses in children under 19 years of age alone. (31). A recent study has identified 56 

these two compounds (azithromycin and hydroxychloroquine) among 97 total potentially 57 

active agents as possible treatments for this disease (32). 58 

In a preliminary clinical study, hydroxychloroquine and, with even greater potency, the 59 

combination of hydroxychloroquine and azithromycin were found effective in reducing the 60 

SARS-CoV-2 viral load in COVID-19 patients (33). Since the beginning of the epidemic in 61 

the Marseille region we isolated numerous strains and we tested one of them, the SARS-CoV-62 

2 IHUMI-3, using different concentrations of hydroxychloroquine and azithromycin, alone 63 

and in combination, with Vero E6 cells. 64 

Materials and Methods 65 

Viral isolation procedure and viral stock 66 

The procedure of viral isolation of our SARS-Cov 2 strain IHUMI-3 was detailed elsewhere 67 

(33). The viral production was done in 75 cm
2
 cell culture flask containing Vero E6 cells 68 

(American type culture collection ATCC® CRL-1586™) in Minimum Essential Media 69 

(Gibco, ThermoFischer) (MEM) with 4% of fetal bovine serum and 1% glutamine. 70 

Cytopathic effect was monitored daily under an inverted microscope (Figure 1). After nearly 71 

complete cell lysis (approximately 96 hours), viral supernatant was used for inoculation on 72 

96-well plate.  73 

Testing procedure for drugs 74 

Briefly, we prepared 96-well plates with 5.10
5
 cells/mL of Vero E6 (200µL per well), using 75 

MEM with 4% of fetal bovine serum and 1% L-glutamine. Plates were incubated overnight at 76 

37°C in a CO2 atmosphere. Drug concentrations tested were 1, 2 and 5 M for 77 



hydroxychloroquine and 2, 5 and 10 M for azithromycin. We also tested combinations of 78 

these agents at these concentrations, each test done at least in triplicate. Four hours before 79 

infection, cell culture supernatant was removed and replaced by drugs diluted in the culture 80 

medium. At t=0, virus suspension in culture medium was added to all wells except in negative 81 

controls where 50µL of the medium was added. We tested two multiplicities of infection 82 

(MOI) at 2.5 and at 0.25. Then RT-PCR was done 30 minutes post-infection in one plate and 83 

again at 60 hours post-infection on a second plate. For this, 100 L from each well was 84 

collected and added to 100 L of the ready-use VXL buffer from QIAcube kit (Qiagen, 85 

Germany). The extraction was done using the manual High Pure RNA Isolation Kit (Roche 86 

Life Science), following the recommended procedures. The RT-PCR was done using the 87 

Roche RealTime PCR Ready RNA Virus Master Kit. The primers were designed against the 88 

E gene using the protocol of Amrane et al. (34) in the Roche LightCycler® 480 Instrument II. 89 

Transmission electron microscopy and scanning electron microscopy procedures. 90 

Well supernatants samples (50µL) were fixed with 2.5% glutaraldehyde in 0.1 M cacodylate 91 

buffer for at least 1hour. For transmission electron microscopy negative staining, a drop of 92 

sample solution was adsorbed for 5 minutes onto formvar carbon films on 400 mesh nickel 93 

grids (FCF400-Ni, EMS). Grids were stained for 10 seconds with 0.2% Oolong Tea Extract 94 

(OTE) in 0.1 M cacodylate buffer. All steps were performed at room temperature. Electron 95 

micrographs were acquired on a Tecnai G2 transmission electron microscope (Thermo-96 

Fischer/FEI) operated at 200 keV and equipped with a 4096 × 4096 pixels resolution Eagle 97 

camera (FEI).  The same grids were observed on scanning electron microscope SEM SU5000 98 

microscope 99 

Results 100 

No cytotoxicity was associated with drugs alone or in combination in control wells 101 

(without viruses). We detected RNA viral production from 25 to 16 cycle-thresholds (Ct, 102 



inversely correlated with RNA copy numbers) for the positive control that was associated 103 

with cell lysis. In all cases, cell lysis at 60 hours was correlated with viral production as 104 

compared to control (Figure 2). At low MOI, azithromycin or hydroxychloroquine alone had 105 

no or low impact on the viral production compared to the positive control. We observed only 106 

a moderate effect for hydroxychloroquine at 5 µM in 2 of the 3 replicates (Figure 2a). For the 107 

combination of azithromycin and hydroxychloroquine, we observed inhibition of viral 108 

replication  for wells containing hydroxychloroquine at 5 M in combination with 109 

azithromycin at 10 and 5 M (Figure 2b). Moreover, one cytopathic effect was observed at 60 110 

hours post infection in these ten wells (Figure 3).  Lack of multiplication of the virus in wells 111 

with azithromycin and hydroxychloroquine combination was confirmed by TEM and SEM 112 

observations (Figure 4). At high MOI, neither drug showed any effect on the cell lysis. The 113 

only condition where an effect was observed was the combination of hydroxychloroquine at 2 114 

M and azithromycin at 10 M, leading to inhibition of viral replication measured by RT-115 

PCR.  116 

Discussion 117 

In this present work, we could confirm a moderate effect of hydroxychloroquine alone on 118 

SARS-CoV2 at low MOI as previously observed with the lowest concentrations used in a 119 

prior study (19). The most striking observation was the synergistic effect of the combination 120 

of hydroxychloroquine and azithromycin. As compared to other studies testing 121 

hydroxychloroquine for which viral growth was evaluated at 48h, our conditions with 122 

prolonged incubation time of 60 hours showed that this effect remained observable. As for 123 

MOI, even at the higher MOI of 2.5, as compared to the data of Liu et al. where the highest 124 

MOI was of 0.8, the effect of the combination to inhibit viral growth was quantified by RT-125 

PCR. Hydroxychloroquine has been demonstrated in vitro to inhibit replication of SARS-126 

CoVs 1 and 2 (17;19). Concentrations of drugs for our study were based on the known 127 



cytotoxicity of the drugs (50% of cytotoxicity, EC 50) and their effect on microorganisms 128 

(50% inhibitory concentration, IC50). With Zika virus, azithromycin showed activity with an 129 

IC 50 range from 2.1 to 5.1 μM depending on MOI (28) without notable effect on EC 50 at 130 

high concentration (29). On Vero E6 it was shown that for hydroxychloroquine, EC 50 is 131 

close to 250 μM (249.50 μM), which is significantly above the concentrations we tested 132 

herein (19). Against SARS-CoV 2, the IC 50 of hydroxychloroquine was determined to be 133 

4.51, 4.06, 17.31, and 12.96 μM with various MOI of 0.01, 0.02, 0.2, and 0.8, respectively.  134 

One of the main criticisms of previously published data was that drug concentrations for viral 135 

inhibition used in vitro are difficult to translate clinically due to side effects that would occur 136 

at those concentrations. The synergy between azithromycin and hydroxychloroquine that we 137 

observed herein is at concentrations achieved in vivo and detected in pulmonary tissues (35-138 

37). Our data are thus in agreement with the clinical efficacy of the combination of 139 

hydroxychloroquine and azithromycin demonstrated by Gautret et al. (33). They support the 140 

clinical use of this drug combination, especially at the early stage of the COVID-19 infection 141 

before the patients develop respiratory distress syndrome with associated cytokine storm and 142 

become less treatable by any antiviral treatment.  143 
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Figure 1: Observations of infected Vero E6 Monolayer. 276 

Observation was done 48 hours post infection by the SARS-CoV 2 strain IHUMI-3. 277 

Magnitude X400. The picture was captured on ZEISS AxioCam ERC 5s. 278 

 279 

 280 

 281 
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Figure 2: RNA viral quantification between 0 and 60 hours post infection. 283 

Ordered axis represents the number of cycle-thresholds obtained by RT-PCR. For each 284 

condition, the first histogram, in blue, represents average RNA cycle-thresholds quantification 285 

at H0, and the second histogram, in green, represents average RNA viral quantification 60 286 

hours post-infection. Standard deviation scales are present for each condition (number of 287 

replicates was indicated for all conditions as n=Y and n=7 for the positive control). 288 

2A. represents molecules tested alone, A10 is for azithromycin at 10 M, A5 at 5 M, A2 is 289 

at 2 M, H5 is for hydroxychloroquine at 5 M, H2 for 2 M, H1 for 1 µM. 2B. represents 290 

the combination of molecules tested.  291 

 292 
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Figure 3: Observations of infected cells resistant or not to viral replication. 295 

Pictures were captured on ZEISS AxioCam ERC 5s, 58 hours post infection by the SARS-296 

CoV 2 strain IHUMI-3. Magnitude X200. 3A-B-C. overview of the monolayer in each well 297 

for the condition of azithromycin 5 M associated with hydroxychloroquine at 5 M, 3D. 298 

shows a cytopathic effect observed in one well in the condition azithromycin 10 M 299 

combined with hydroxychloroquine at 2 M 3E. negative control well and 3F. positive 300 

control well. 301 

 302 
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Figure 4: Electron microscopy observations. 305 

4 A-B-C pictures were captured on Tecnai 4 D-E-F pictures were captured on SU 5000. 306 

4A -D correspond to the condition at H0 on the well with azithromycin and 307 

hydroxychloroquine both at 5 M . 4 B-E correspond to the condition H60 on the well with 308 

azithromycin and hydroxychloroquine both at 5 M. 4 C-F correspond to the positive control 309 

at H60 allowing to observe viral particles. Scales bars are indicated below each panel. 310 
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