In vitro testing of Hydroxychloroquine and Azithromycin on SARS-CoV-2 shows synergistic effect.

Julien Andreani\textsuperscript{a,b}, Marion Le Bideau\textsuperscript{a,b}, Isabelle Duflot\textsuperscript{a,b}, Priscilla Jardot\textsuperscript{a,b}, Clara Rolland\textsuperscript{a,b}, Manon Boxberger\textsuperscript{a,b}, Jacques Yaacoub Bou Khalil\textsuperscript{a}, Jean-Pierre Baudouin\textsuperscript{b}, Nathalie Wurtz\textsuperscript{a,b}, Jean-Marc Rolain\textsuperscript{a,b}, Philippe Colson\textsuperscript{a,b}, Bernard La Scola\textsuperscript{a,b,*}, Didier Raoult\textsuperscript{a,b,*}

\textsuperscript{a}IHU-Méditerranée Infection, Marseille, France.
\textsuperscript{b}Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France.

*Corresponding authors:

Didier Raoult didier.raoult@gmail.com, Bernard La Scola bernard.la-scola@univ-amu.fr

Key words: 2019-nCoV; SARS-CoV-2; COVID-19; hydroxychloroquine; azithromycin; Vero
Abstract

Human coronaviruses SARS-CoV-2 appeared at the end of 2019 and led to a pandemic with high morbidity and mortality. As there are currently no effective drugs targeting this virus, drug repurposing represents a short-term strategy to treat millions of infected patients at low costs. Hydroxychloroquine showed an antiviral effect *in vitro*. *In vivo* it also showed efficacy, especially when combined with azithromycin in a preliminary clinical trial. Here we demonstrate that the combination of hydroxychloroquine and azithromycin has a synergistic effect *in vitro* on SARS-CoV-2 at concentrations compatible with that obtained in Human lung.
Since the end of 2019, the world has encountered pandemic conditions attributable to a novel Coronavirus SARS-CoV 2 (1-3). This is the 7th Coronavirus identified to infect the human population (1;4;5) and the first one that had pandemic potential in non-immune populations in the 21st century (6). Finding therapeutics is thus crucial, and it is proposed to do so by repurposing existing drugs (7-9). This strategy presents the advantages that safety profiles of such drugs are known and that they could be easily produced at relatively low cost, thus being quicker to deploy than new drugs or a vaccine. Chloroquine, a decades-old antimalarial agent, an analog of quinine, was known to inhibit the acidification of intracellular compartments (10) and has shown in vitro and in vivo (mice models) activity against different subtypes of Coronaviruses: SARS-CoV-1, MERS-CoV, HCoV-229E and HCoV-OC43 (11-16). In 2004 it was tested in vitro against SARS-CoV 1 (17) and caused a 99% reduction of viral replication after 3 days at 16 μM. Moreover, tests in vitro have shown inhibition of viral replication on SARS-CoV 2 detected by PCR and by CCK-8 assay (18). Hydroxychloroquine (hydroxychloroquine sulfate; 7-Chloro-4-[4-(N-ethyl-N-b-hydroxyethylamino)-1-methylbutylamino]quinoline sulfate) has shown activity against SARS-CoV2 in vitro and exhibited a less toxic profile (19). This drug is well known and currently used mostly to treat autoimmune diseases and also by our team to treat Q fever disease (20;21) and Whipple’s disease (22;23). In those clinical contexts, concentrations obtained in serum are close to 0.4-1 μg/mL at the dose of 600 mg per day over several months (24). Clinical tests of chloroquine and hydroxychloroquine to treat COVID-19 are underway in China (25), with such trials using hydroxychloroquine in progress in the US (ClinicalTrials.gov Identifier: NCT04307693) and in Europe with the Discovery Trial. In this drug repurposing effort, antibacterial components have also been tested. Teicoplanin, a glycopeptide, was demonstrated in vitro to inhibit cellular penetration of Ebola virus (26) and SARS-CoV 2
Azithromycin (azithromycin dihydrate), a macrolide, N-Methyl-11-aza-10-deoxo-10-dihydroerythromycin A, has shown antiviral activity against Zika (28-30). Azithromycin is a well-known and safe drug, widely prescribed in the US, for example, with 12 million treatment courses in children under 19 years of age alone. (31). A recent study has identified these two compounds (azithromycin and hydroxychloroquine) among 97 total potentially active agents as possible treatments for this disease (32).

In a preliminary clinical study, hydroxychloroquine and, with even greater potency, the combination of hydroxychloroquine and azithromycin were found effective in reducing the SARS-CoV-2 viral load in COVID-19 patients (33). Since the beginning of the epidemic in the Marseille region we isolated numerous strains and we tested one of them, the SARS-CoV-2 IHUMI-3, using different concentrations of hydroxychloroquine and azithromycin, alone and in combination, with Vero E6 cells.

Materials and Methods

Viral isolation procedure and viral stock

The procedure of viral isolation of our SARS-CoV-2 strain IHUMI-3 was detailed elsewhere (33). The viral production was done in 75 cm² cell culture flask containing Vero E6 cells (American type culture collection ATCC® CRL-1586™) in Minimum Essential Media (Gibco, ThermoFischer) (MEM) with 4% of fetal bovine serum and 1% glutamine. Cytopathic effect was monitored daily under an inverted microscope (Figure 1). After nearly complete cell lysis (approximately 96 hours), viral supernatant was used for inoculation on 96-well plate.

Testing procedure for drugs

Briefly, we prepared 96-well plates with 5.10⁵ cells/mL of Vero E6 (200µL per well), using MEM with 4% of fetal bovine serum and 1% L-glutamine. Plates were incubated overnight at 37°C in a CO₂ atmosphere. Drug concentrations tested were 1, 2 and 5 µM for
hydroxychloroquine and 2, 5 and 10 µM for azithromycin. We also tested combinations of these agents at these concentrations, each test done at least in triplicate. Four hours before infection, cell culture supernatant was removed and replaced by drugs diluted in the culture medium. At t=0, virus suspension in culture medium was added to all wells except in negative controls where 50µL of the medium was added. We tested two multiplicities of infection (MOI) at 2.5 and at 0.25. Then RT-PCR was done 30 minutes post-infection in one plate and again at 60 hours post-infection on a second plate. For this, 100 µL from each well was collected and added to 100 µL of the ready-use VXL buffer from QIAcube kit (Qiagen, Germany). The extraction was done using the manual High Pure RNA Isolation Kit (Roche Life Science), following the recommended procedures. The RT-PCR was done using the Roche RealTime PCR Ready RNA Virus Master Kit. The primers were designed against the E gene using the protocol of Amrane et al. (34) in the Roche LightCycler® 480 Instrument II.

Transmission electron microscopy and scanning electron microscopy procedures.

Well supernatants samples (50µL) were fixed with 2.5% glutaraldehyde in 0.1 M cacodylate buffer for at least 1 hour. For transmission electron microscopy negative staining, a drop of sample solution was adsorbed for 5 minutes onto formvar carbon films on 400 mesh nickel grids (FCF400-Ni, EMS). Grids were stained for 10 seconds with 0.2% Oolong Tea Extract (OTE) in 0.1 M cacodylate buffer. All steps were performed at room temperature. Electron micrographs were acquired on a Tecnai G2 transmission electron microscope (Thermo-Fischer/FEI) operated at 200 keV and equipped with a 4096 x 4096 pixels resolution Eagle camera (FEI). The same grids were observed on scanning electron microscope SEM SU5000 microscope.

Results

No cytotoxicity was associated with drugs alone or in combination in control wells (without viruses). We detected RNA viral production from 25 to 16 cycle-thresholds (Ct,
inversely correlated with RNA copy numbers) for the positive control that was associated
with cell lysis. In all cases, cell lysis at 60 hours was correlated with viral production as
compared to control (Figure 2). At low MOI, azithromycin or hydroxychloroquine alone had
no or low impact on the viral production compared to the positive control. We observed only
a moderate effect for hydroxychloroquine at 5 µM in 2 of the 3 replicates (Figure 2a). For the
combination of azithromycin and hydroxychloroquine, we observed inhibition of viral
replication for wells containing hydroxychloroquine at 5 µM in combination with
azithromycin at 10 and 5 µM (Figure 2b). Moreover, one cytopathic effect was observed at 60
hours post infection in these ten wells (Figure 3). Lack of multiplication of the virus in wells
with azithromycin and hydroxychloroquine combination was confirmed by TEM and SEM
observations (Figure 4). At high MOI, neither drug showed any effect on the cell lysis. The
only condition where an effect was observed was the combination of hydroxychloroquine at 2
µM and azithromycin at 10 µM, leading to inhibition of viral replication measured by RT-
PCR.

**Discussion**

In this present work, we could confirm a moderate effect of hydroxychloroquine alone on
SARS-CoV2 at low MOI as previously observed with the lowest concentrations used in a
prior study (19). The most striking observation was the synergistic effect of the combination
of hydroxychloroquine and azithromycin. As compared to other studies testing
hydroxychloroquine for which viral growth was evaluated at 48h, our conditions with
prolonged incubation time of 60 hours showed that this effect remained observable. As for
MOI, even at the higher MOI of 2.5, as compared to the data of Liu et al. where the highest
MOI was of 0.8, the effect of the combination to inhibit viral growth was quantified by RT-
PCR. Hydroxychloroquine has been demonstrated in vitro to inhibit replication of SARS-
CoVs 1 and 2 (17;19). Concentrations of drugs for our study were based on the known
cytotoxicity of the drugs (50% of cytotoxicity, EC 50) and their effect on microorganisms (50% inhibitory concentration, IC50). With Zika virus, azithromycin showed activity with an IC 50 range from 2.1 to 5.1 μM depending on MOI (28) without notable effect on EC 50 at high concentration (29). On Vero E6 it was shown that for hydroxychloroquine, EC 50 is close to 250 μM (249.50 μM), which is significantly above the concentrations we tested herein (19). Against SARS-CoV 2, the IC 50 of hydroxychloroquine was determined to be 4.51, 4.06, 17.31, and 12.96 μM with various MOI of 0.01, 0.02, 0.2, and 0.8, respectively. One of the main criticisms of previously published data was that drug concentrations for viral inhibition used in vitro are difficult to translate clinically due to side effects that would occur at those concentrations. The synergy between azithromycin and hydroxychloroquine that we observed herein is at concentrations achieved in vivo and detected in pulmonary tissues (35-37). Our data are thus in agreement with the clinical efficacy of the combination of hydroxychloroquine and azithromycin demonstrated by Gautret et al. (33). They support the clinical use of this drug combination, especially at the early stage of the COVID-19 infection before the patients develop respiratory distress syndrome with associated cytokine storm and become less treatable by any antiviral treatment.
References


Funding: This research was funded by the French Government under the “Investissements d’avenir” (Investments for the Future) program managed by the Agence Nationale de la Recherche (ANR, French National Agency for Research), (reference: Méditerranée Infection 10-IHAU-03), by Région Provence-Alpes-Côte d’Azur and European funding FEDER PRIMI.

Conflicts of Interest:

Authors would like to declare that Didier Raoult is a consultant in microbiology for Hitachi High-Tech Corporation. Funding sources had no role in the design and conduct of the study, collection, management, analysis, and interpretation of the data; and preparation, review, or approval of the manuscript. The others authors declare no conflict of interest.

Acknowledgments: The authors are indebted to David Scheim for background literature searching and editing the English version of this paper. We sincerely thank Takashi Irie, Kyoko Imai, Shigeki Matsubara, Taku Sakazume, Toshihide Agemura, Yusuke Ominami, and the Hitachi team of Japan (Hitachi High-Tech Corporation, Toranomon Hills Business Tower, 1-17-1 Toranomon, Minato-ku, Tokyo 105-6409, Japan) for the collaborative study conducted together with IHU Méditerranée Infection, and for the installation of a SU5000 microscope at IHU Méditerranée Infection.
Figure 1: Observations of infected Vero E6 Monolayer.

Observation was done 48 hours post infection by the SARS-CoV 2 strain IHUMI-3. Magnitude X400. The picture was captured on ZEISS AxioCam ERC 5s.
**Figure 2: RNA viral quantification between 0 and 60 hours post infection.**

Ordered axis represents the number of cycle-thresholds obtained by RT-PCR. For each condition, the first histogram, in blue, represents average RNA cycle-thresholds quantification at H0, and the second histogram, in green, represents average RNA viral quantification 60 hours post-infection. Standard deviation scales are present for each condition (number of replicates was indicated for all conditions as n=Y and n=7 for the positive control).

2A. represents molecules tested alone, A10 is for azithromycin at 10 µM, A5 at 5 µM, A2 is at 2 µM, H5 is for hydroxychloroquine at 5 µM, H2 for 2 µM, H1 for 1 µM. **2B.** represents the combination of molecules tested.
Figure 3: Observations of infected cells resistant or not to viral replication.

Pictures were captured on ZEISS AxioCam ERC 5s, 58 hours post infection by the SARS-CoV 2 strain IHUMI-3. Magnitude X200. 3A-3C. overview of the monolayer in each well for the condition of azithromycin 5 μM associated with hydroxychloroquine at 5 μM, 3D. shows a cytopathic effect observed in one well in the condition azithromycin 10 μM combined with hydroxychloroquine at 2 μM 3E. negative control well and 3F. positive control well.
Figure 4: Electron microscopy observations.

4 A-B-C pictures were captured on Tecnai 4 D-E-F pictures were captured on SU 5000.

4A -D correspond to the condition at H0 on the well with azithromycin and hydroxychloroquine both at 5 μM. 4 B-E correspond to the condition H60 on the well with azithromycin and hydroxychloroquine both at 5 μM. 4 C-F correspond to the positive control at H60 allowing to observe viral particles. Scales bars are indicated below each panel.